Quirogane, Prenopsane, and Patzcuarane Skeletons Obtained by Photochemically Induced Molecular Rearrangements of Longipinene Derivatives

Myriam Meléndez-Rodríguez, Carlos M. Cerda-García-Rojas, and Pedro J oseph-Nathan*
Departamento de Química, Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 Mexico

Received April 10, 2002

Abstract

Ultraviolet irradiation of (1R,3S,4S,5S,10R,11R)-1-acetyloxy-7-oxolongipin-8-ene (6), prepared from longipinene diesters isolated from Stevia salicifolia, afforded the new quirogane (7) and prenopsane (8) derivatives, as the major products, together with the minor secondary photoproduct (1R, $3 \mathrm{R}, 5 \mathrm{R}, 8 \mathrm{~S}, 11 \mathrm{~S}$)-1-acetyloxy-7-oxopatzcuar-9-ene (9), which possesses a novel tricyclic sesquiterpene skeleton. The stereostructures of the new compounds 7-9 were mainly determined by NMR techniques including COSY, HSQC, HMBC, and NOESY in combination with molecular modeling obtained by density functional theory calculations. A reaction mechanism accounting for the observed transformations is proposed.

Molecular rearrangements of carbocyclic structures are important tools for the synthetic organic chemists because they allow obtaining, in a single step, new carbocyclic skeletons whose preparation through alternate synthetic methods would involve a more complicated pathway. In particular, photochemical rearrangements have contributed to the development of efficient and selective transformations employed in the preparation of complex bioactive molecules. ${ }^{1-3}$ In this sense, natural products, due to their structural versatility and stereochemical variations, ${ }^{4,5}$ represent excellent models for experimental and theoretical chemists to conduct these kind of studies.

Several highly functionalized longipinene derivatives are found as the main constituents of many species of the genus Stevia. ${ }^{6}$ These classes of substances, whose absolute configuration is known, ${ }^{7}$ have shown an important tendency to undergo molecular rearrangements due to the strained fused cyclobutane located between a six- and a sevenmembered ring. ${ }^{8-15}$ These naturally occurring sesquiterpenoids are generally functionalized at C-1 with a carbonyl group and at C-7, C-8, C-9, and C-13 with hydroxyl and/or acyloxy groups. ${ }^{6}$

In previous investigations, ${ }^{14,15}$ we have shown that, under ultraviolet irradiation, the longipinene derivative $\mathbf{1}$ underwent photochemical transformations into 2-5 (Scheme 1) owing to the presence of an α, β-unsaturated cydohexenone moiety with a cyclobutane ring attached to the β-position. To further explore new photochemical rearrangements of longipinene derivatives to obtain unusual and highly functionalized tricyclic sesquiterpenes, we decided to prepare a new longipinene derivative having the α, β-unsaturated carbonyl group at the seven-membered ring instead of at the six-membered ring. This new substrate would have a carbonyl group at C-7 and α, β unsaturation between $\mathrm{C}-8$ and $\mathrm{C}-9$ and also would possess a four-membered ring attached to the β-position.

In this paper we describe the preparation of ($1 \mathrm{R}, 3 \mathrm{~S}, 4 \mathrm{~S}$, $5 \mathrm{~S}, 10 \mathrm{R}, 11 \mathrm{R}$)-1-acetyloxy-7-oxol ongipin-8-ene (6) from the natural longipinene diesters of Stevia salicifolia Cav. (Asteraceae), as well as the exploration of its photochemical reactivity. Ultraviolet irradiation of 6 (Scheme 2) afforded

[^0](1S,3S,4S,5S,8S,11R)-1-acetyloxy-7-oxoquirog-9-ene (7), (1R,3S,4R,5S,10R ,11R)-1-acetyloxy-7-oxoprenops-8-ene (8), and (1R,3S,5R,8S,11S)-1-acetyloxy-7-oxopatzcuar-9-ene (9). It is pertinent to mention that the latter substance is based on a new carbocyclic skeleton.
During our efforts toward the preparation of starting material 6 for the photochemical studies, new aspects of the chemistry of naturally occurring highly oxygenated longipinene derivatives were found. Furthermore, the results obtained in this work provided new knowledge about the photochemistry of strained sesquiterpenes, which can be useful in the design of synthetic strategies, including those for obtaining new carbocyclic ring systems.

Results and Discussion

Compound $\mathbf{6}$ was prepared from the longipinantriol 10, which was easily obtained from the natural longipinendiol one diesters present in the roots of S. salicifolia. ${ }^{16}$ To achieve such a transformation, it was necessary to protect the secondary hydroxyl groups at C-1 and C-9 in 10, to oxidize the remaining hydroxyl group at C-7, and, finally, to eliminate the protected hydroxyl group at C-9. Thus, in a first approach, we proceeded to acetylate $\mathbf{1 0}$ with $\mathrm{Ac}_{2} \mathrm{O}$ (2.15 equiv) in pyridine at $-20^{\circ} \mathrm{C}$ for 21 days. Chromatographic separation of the crude material afforded the triacetylated derivative $\mathbf{1 1}^{16}$ in 17% yield, the mixture of diacetylated compounds 12-14 (55\%), and the monoacetylated products 15, 16, and 17 ($15 \%, 7 \%$, and 2%, respectively). Starting material $\mathbf{1 0}$ was also recovered (4\%). The position of each hydroxyl and/or acetate group in 11-17 was evident after comparison of the ${ }^{1} \mathrm{H}$ NMR data of these compounds with those reported for $\mathbf{1 0},{ }^{16} \mathbf{1 1},{ }^{16}$ and $\mathbf{1 2 .}{ }^{13}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 13-17 and other molecules obtained during the preparation of $\mathbf{6}$ are summarized in Tables 1-4 and in the Experimental Section. FLOCK ${ }^{17}$ or HMBC correlations were very useful to assign the quaternary carbons C-6 and C-10, since C-6 showed correlations with the proton signals for the gem-dimethyl group ($\mathrm{Me}-12$ and $\mathrm{Me}-13$), while $\mathrm{C}-10$ showed a correlation with the proton signal for $\mathrm{Me}-14$. The individual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment of $\mathrm{Me}-12$ and $\mathrm{Me}-13$ was established by NOESY correlations from Me-12 to $\mathrm{H}-4$ and from $\mathrm{Me}-13$ to H-11, together with a HETCOR spectrum. In those cases where the NOESY experiments did not allow such proton

Scheme 1. ($4 \mathrm{R}, 5 \mathrm{~S}, 7 \mathrm{~S}, 8 \mathrm{R}, 9 \mathrm{~S}, 10 \mathrm{R}, 11 \mathrm{R}$)-7,8,9-Triacetyloxy-1-oxolongipin-2-ene (1) and Its Photoproducts 2-5

Scheme 2. (1R, $3 \mathrm{~S}, 4 \mathrm{~S}, 5 \mathrm{~S}, 10 \mathrm{R}, 11 \mathrm{R}$)-1-Acetyloxy-7-oxolongipin-8-ene (6) and Its Photoproducts 7-9

assignments, due to their chemical shift proximity, they were followed by inspection of the HETCOR data taking into account the ${ }^{13} \mathrm{C}$ assignments determined by analogy with the whole series of new and previously reported derivatives. ${ }^{7-13,16}$

The product ratio for the monoesterified derivatives 15, 16, and 17 was 7.5:3.5:1.0, reflecting an important difference in the chemical reactivity of the three secondary hydroxyl groups in compound 10. The chemical reactivity difference between the hydroxyl groups at C-7 and C-9 was as expected, in agreement with their different orientation, 7-pseudo-equatorial and 9-pseudo-axial, in the twist-chair seven-membered ring conformation previously described for the longipinene system ${ }^{7}$ and clearly observed in the mini-

$\mathrm{E}_{\mathrm{DFT}}=-813.17769$ hartrees
Figure 1. Lowest energy conformation of $\mathbf{1 0}$.
mum energy conformation of triol 10 (Figure 1) obtained by molecular mechanics calculations (MMX) ${ }^{18}$ and subsequent geometry optimization using density functional theory computations ${ }^{19}$ at thepBP/DN** level of theory. The increased reactivity of the remaining secondary hydroxyl group at C-1 with respect to that at C-7 can be explained by its pseudo-equatorial orientation in the half-chair sixmembered ring conformation present in 10 (Figure 1) together with the lack of quaternary carbon atoms at the α-positions, which provided an important steric effect, as is the case of the hydroxyl group at C-7.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of diacetates 12-14 indicated that the major product was the 1,7diacetate 14 (ca. 80\%). The mixture was oxidized with
$\mathrm{CrO}_{3} / \mathrm{AcOH}$ at room temperature for 2 h , affording a mixture of the isomeric ketones 18, 19, and $\mathbf{2 0}$ in 68% yield, in a 3.6:1.0:15.4 ratio, respectively, as shown by ${ }^{1} \mathrm{H}$ NMR. Surprisingly, under these oxidizing conditions, the introduction of a hydroxyl group at C-3 in the longipinane system occurred, further affording compound 21 in 8\% yield. Its molecular formula $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6}$ (HREIMS, m/z 352.1876) was consistent with the presence of an additional hydroxyl group in $\mathbf{2 1}$ in comparison to the HREIMS data of 18-20. The introduction of the hydroxyl group at C-3

18: $R=A c$
$23: R=H$

20 : $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{OAc} ; \mathrm{R}_{2}=\mathrm{H}$
$24: \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H}$
$25: \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH} ; \mathrm{R}_{3}=\mathrm{H}$
was also established by the IR broad absorption at 3471 $\mathrm{cm}^{-1}(\mathrm{OH}, \mathrm{br})$ and the ${ }^{1} \mathrm{H}$ NMR signals at $\delta_{\mathrm{H}} 2.53(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{2 \alpha, 2 \beta}=16.6, \mathrm{~J}_{1,2 \alpha}=10.0 \mathrm{~Hz}\right), 1.94\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{2 \alpha, 2 \beta}=16.6\right.$, $\mathrm{J}_{1,2 \beta}=5.0 \mathrm{~Hz}$), and $5.25(1 \mathrm{H}$, ddd, J $1,2 \alpha=10.0, \mathrm{~J} 1,2 \beta=5.0$, $\mathrm{J}_{1,11}=2.9 \mathrm{~Hz}$) for the methylene protons $\mathrm{H}-2 \alpha$ and $\mathrm{H}-2 \beta$ and the methine proton $\mathrm{H}-1$, respectively. Furthermore, the singlet at $\delta_{\mathrm{H}} 1.46$ for $\mathrm{Me}-15$, in combination with the FLOCK ${ }^{17}$ correlation between $\mathrm{Me}-15$ and the quaternary carbon C-3 at $\delta_{\mathrm{C}} 74.3$, was in agreement with the hydroxyl group at C-3. The R configuration at C-3 was evident from the NOESY correlation between $\mathrm{Me}-14$ and $\mathrm{Me}-15$, indicating that both methyl groups are located on the β-face of the molecule and that the hydroxyl group at C-3 possesses an α-orientation. The presence of a keto group at C-9 was confirmed by the FLOCK ${ }^{17}$ correlation between the carbonyl carbon ($\delta_{\mathrm{C}} 211.6, \mathrm{C}-9$) and the signal for Me-14 (δ_{H} 1.26). The individual assignment of the signals for the methylene protons $\mathrm{H}-8 \alpha(3.14,1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.0,1.5 \mathrm{~Hz}$) and $\mathrm{H}-8 \beta$ (2.82, 1 H , dd, J $=13.0,7.2 \mathrm{~Hz}$) was achieved from NOESY correlations, since the signal at $\delta_{H} 3.14$ ($\mathrm{H}-8 \alpha$) correlated with $\mathrm{H}-11$ and $\mathrm{Me}-13$. Crystallization of 21 from $\mathrm{CHCl}_{3} /$ hexane yielded suitable crystals for an X-ray study. As shown in Figure 2, the X-ray structure confirmed the α-orientation of the hydroxyl group at C-3 in 21.

Hydrolysis of the acetate groups in the mixture of ketones 18-20 with KOH in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ under reflux for 2 h afforded, after chromatographic separations, the unsaturated compound 22 (60\%), ketodiol $\mathbf{2 3}^{16}$ (9\%), and the epimeric mixture of ketodiols 24 and 25 (9% and 5\%, respectively). The ${ }^{1}$ H NMR spectrum of $\mathbf{2 2}$ (Table 2) showed two vinylic protons at $\delta_{H} 6.05(\mathrm{H}-7)$ and $5.84(\mathrm{H}-8)$, which correlated, in the HETCOR diagram, with the sp^{2} carbon signals at $\delta_{C} 150.3$ (C-7) and 126.1 (C-8), respectively, in agreement with the presence of the α, β-unsaturated ketone. The signal at $\delta_{\mathrm{H}} 4.36(1 \mathrm{H}$, ddd, J $=9.7,5.3,3.0 \mathrm{~Hz}, \mathrm{H}-1$) was consistent with the presence of a hydroxyl group at C-1. In addition, the IR bands at 3608, 3480 (OH), and 1650

Table 1. ${ }^{1} \mathrm{H}$ NMR Data of Compounds 6, 13-17, and 19-21 ${ }^{\text {a }}$

Table 2. ${ }^{1} \mathrm{H}$ NMR Data of Compounds 22, 24, 25, and 27-32a

proton	22	24	25	27	28	29	30	31	32
1	$\begin{aligned} & 4.36 \text { ddd } \\ & (9.7,5.3,3.0) \end{aligned}$	$\begin{aligned} & 4.27 \mathrm{br} \mathrm{dd} \\ & (9.6,5.7) \end{aligned}$	$\begin{aligned} & 4.27 \text { ddd } \\ & (9.4,5.7,3.0) \end{aligned}$	$\begin{aligned} & 4.32 \mathrm{ddd} \\ & (9.5,5.9,2.8) \end{aligned}$	$\begin{aligned} & 5.28 \text { ddd } \\ & (9.9,5.1,3.1) \end{aligned}$	$\begin{aligned} & 2.36 \mathrm{t} \\ & (4.4) \end{aligned}$	$\begin{aligned} & 5.62 \mathrm{ddd} \\ & (9.7,5.1,3.3) \end{aligned}$	4.39 br m	$\begin{aligned} & 5.58 \text { ddd } \\ & (9.8,5.1,3.2) \end{aligned}$
2α	2.65 ddd	2.59 ddd	2.57 ddd ${ }^{\text {(}}$	2.60 ddd ${ }^{\text {a }}$	2.70 ddd ${ }^{\text {d }}$	1.63 dddd	2.87 ddd ${ }^{\text {d }}$	2.64 ddd	2.83 ddd ${ }^{\text {a }}$
	(15.5, 9.9, 9.7)	(15.4, 9.7, 9.6)	(15.4, 9.6, 9.4)	(15.4, 9.7, 9.5)	(15.7, 9.9, 9.9)	(overlap)	(15.8, 9.9, 9.7)	(15.4, 9.6, 9.6)	(15.8, 9.9, 9.8)
2β	$\begin{aligned} & 1.59 \text { ddd } \\ & 155 \end{aligned}$	1.55 ddd	1.55 ddd	1.52 ddd	1.58 ddd	1.54 dd	$\begin{aligned} & 1.74 \mathrm{ddd} \\ & \hline 1587 \end{aligned}$	1.57 ddd	$1.69 \mathrm{ddd}$
	$(15.5,7.3,5.3)$	$(15.4,8.0,5.7)$	(15.4, 8.0, 5.8)	$(15.4,7.9,5.9)$	(15.7, 7.1, 5.1)	(overlap)	$(15.8,7.2,5.1)$	(15.4, 7.6, 5.7)	$(15.8,7.3,5.1)$
3	2.20 m	2.13 m	2.11 m	2.14 m	2.26 m	2.10 m	2.34 m	$2.18 \mathrm{~m}$ (overlap)	$2.29 \mathrm{~m}$ (overlap)
4	$2.28 \mathrm{br} \mathrm{~d}$ (5.3)	2.52 br d (overlap)	$\begin{aligned} & 2.25 \mathrm{br} \mathrm{~d} \\ & (5.4) \end{aligned}$	$\begin{aligned} & 2.24 \mathrm{br} \mathrm{~d} \\ & (5.2) \end{aligned}$	$\begin{aligned} & 2.30 \mathrm{br} \mathrm{~d} \\ & (5.1) \end{aligned}$	1.81 br s	$\begin{aligned} & 2.27 \mathrm{br} \mathrm{~d} \\ & (5.0) \end{aligned}$	2.14 br d (overlap)	2.16 br d (overlap)
5	1.17 br s	1.06 s	1.06 s	$1.15 \mathrm{~s}$	1.27 br s	1.51 br s	1.35 s	1.13 s	1.26 s
7	$6.05 \text { dd }$ (11.8, 2.2)	$3.74 \text { br d }$ $(8.6,2.3)$	$\begin{aligned} & 3.72 \mathrm{dd} \\ & (9.1,2.2) \end{aligned}$		$\begin{aligned} & 6.05 \mathrm{dd} \\ & (11.9,2.1) \end{aligned}$	$\begin{aligned} & 4.98 \mathrm{~d} \\ & (11.6) \end{aligned}$	$\begin{aligned} & 5.35 \mathrm{dd} \\ & (12.0,1.5) \end{aligned}$	$\begin{aligned} & 5.35 d d \\ & (12.0,1.5) \end{aligned}$	$\begin{aligned} & 3.86 \mathrm{br} \mathrm{~d} \\ & (11.7) \end{aligned}$
8α	5.84 d (11.8)	$\begin{aligned} & \text { (0.0, dd } \\ & (12.5,2.3) \end{aligned}$	$\begin{aligned} & 19.1, \\ & 2.99 \mathrm{dd} \\ & (12.3,9.1) \end{aligned}$	$5.82 \mathrm{~d}$	$5.85 \mathrm{~d}$ (11.9)	1.56 dddd (overlap)	2.24 ddd (overlap)	2.20 ddd (overlap)	$\begin{aligned} & 2.05 \text { ddd } \\ & (15.2,3.7,1.9) \end{aligned}$
8β		2.92 dd $(125,86)$	$\begin{aligned} & 12.9,9 . \\ & 2.90 \mathrm{dd} \end{aligned}$ (123.7.7)			2.21 ddd (15.3, 11.6, 3.6)	2.46 ddd (14.9, 12.0, 3.1)	2.43 ddd (14.9, 12.0, 3.1)	2.32 ddd (overlap)
9				$6.56 d$		$\begin{aligned} & (15.3,11 . \\ & 3.64 \mathrm{dd} \end{aligned}$	$\begin{aligned} & (14.9,12 \\ & 5.30 \mathrm{dd} \end{aligned}$	$5.25 \mathrm{dd}$	5.25 dd (3.7 3.4)
11	$\begin{aligned} & 2.50 \text { ddd } \\ & (5.2,3.0,1.2) \end{aligned}$	2.52 ddd (overlap)	$\begin{aligned} & 2.73 \mathrm{ddd} \\ & (5.4,3.0,1.2) \end{aligned}$	$\begin{aligned} & 2.43 \mathrm{ddd} \\ & (5.2,2.8,1.2) \end{aligned}$	$\begin{aligned} & 2.61 \text { ddd } \\ & (5.1,3.1,1.2) \end{aligned}$	4.49 br d (4.4)	$\begin{aligned} & (3.3,3.1) \\ & 3.04 \mathrm{br} \mathrm{dd} \end{aligned}$ $(5.0,3.3)$	$\begin{aligned} & 2.71 \mathrm{dd} \\ & (4.6,3.2) \end{aligned}$	2.90 br m
12	1.08 s	1.02 s	1.00 s	1.13 s	1.09 s	0.96 s	1.21 s	1.15 s	0.95 s
13	1.06 s	1.00 s	1.01 s	1.12 s	1.09 s	1.16 s	1.08 s	1.01 s	1.09 s
14	1.43 s	1.38 s	1.37 s	1.46 s	1.37 s	1.02 s	1.42 s	1.34 s	1.34 s
15	1.15 d (7.1)	$\begin{aligned} & 1.13 \mathrm{~d} \\ & 1.7 .4) \end{aligned}$	$\begin{aligned} & (7.12) \mathrm{d} \\ & 1 \end{aligned}$	1.16 d (7.1)	$\begin{aligned} & 1.16 \mathrm{~d} \\ & (7.2) \end{aligned}$	$\begin{aligned} & 1.20 \mathrm{~d} \\ & (7.2) \end{aligned}$	$\begin{aligned} & 1.25 \mathrm{~d} \\ & (7.3) \end{aligned}$	$\begin{aligned} & 1.18 \mathrm{~d} \\ & (7.2) \end{aligned}$	$\begin{aligned} & 1.21 \mathrm{~d} \\ & (7.3) \end{aligned}$

Table 3. ${ }^{1} \mathrm{H}$ NMR Data of Compounds 33-41 ${ }^{\text {a }}$

proton	33	34	35	36	37	38	39	40	41
1	$\begin{aligned} & 5.55 \mathrm{ddd} \\ & (9.5,5.6,3.5) \end{aligned}$	$\begin{aligned} & 5.50 \mathrm{ddd} \\ & (9.5,5.3,3.5) \end{aligned}$	$\begin{aligned} & \hline 4.37 \text { ddd } \\ & (9.4,5.5,3.4) \end{aligned}$	4.33 br m	$\begin{aligned} & 5.23 \mathrm{ddd} \\ & \text { (overlap) } \end{aligned}$	$\begin{aligned} & \hline 4.32 \text { ddd } \\ & (9.4,5.7,3.2) \end{aligned}$	$\begin{aligned} & 5.23 \mathrm{ddd} \\ & (9.5,5.5,3.4) \end{aligned}$	$\begin{aligned} & 5.25 \mathrm{ddd} \\ & (10.1,4.8,3.4) \end{aligned}$	$\begin{aligned} & 5.25 \text { ddd } \\ & (9.4,5.5,3.2) \end{aligned}$
2α	2.81 ddd	2.77 ddd	2.56 ddd	2.60 ddd	2.67 ddd	2.60 ddd	2.67 ddd	2.58 dd	2.69 ddd
	(15.6, 9.9, 9.5)	(15.7, 9.8, 9.5)	(15.5, 9.9, 9.4)	(15.4, 9.8, 9.8)	(15.7, 9.8, 9.8)	(15.4, 9.6, 9.4)	(15.7, 9.8, 9.5)	(16.3, 10.1)	(15.8, 9.8, 9.4)
2β	$\begin{aligned} & 1.68 \text { ddd } \\ & (15.6,7.3,5.6) \end{aligned}$	$\begin{aligned} & 1.63 \text { ddd } \\ & (15.7,7.3,5.2) \end{aligned}$	$\begin{aligned} & 1.57 \mathrm{ddd} \\ & (15.5,7.6,5.5) \end{aligned}$	$\begin{aligned} & 1.51 \text { ddd } \\ & (15.4,7.7,5.6) \end{aligned}$	$\begin{aligned} & 1.51 \text { ddd } \\ & (15.7,7.5,5.5) \end{aligned}$	$\begin{aligned} & 1.54 \text { ddd } \\ & (15.4,7.7,5.7) \end{aligned}$	$\begin{aligned} & 1.50 \text { ddd } \\ & (15.7,7.3,5.5) \end{aligned}$	$\begin{aligned} & 1.90 \mathrm{dd} \\ & (16.3,4.8) \end{aligned}$	$\begin{aligned} & 1.52 \text { ddd } \\ & (15.8,7.4,5.5) \end{aligned}$
3	2.24 m	$\begin{aligned} & 2.18 \mathrm{~m} \\ & \text { (overlap) } \end{aligned}$	2.12 m	2.13 m	$2.15 \mathrm{~m}$	$2.10 \mathrm{~m}$	2.15 m		2.17 m
					(overlap)	(overlap)			
4	$\underset{(5.3)}{2.09 \mathrm{~d}}$	$\begin{aligned} & 1.98 \mathrm{~d} \\ & (5.3) \end{aligned}$	$\underset{(5.3)}{1.99 \mathrm{br} \mathrm{~d}}$	$\begin{aligned} & 2.05 \text { br d } \\ & \text { (overlap) } \end{aligned}$	2.05 br d (overlap)	2.02 br d (overlap)	$\begin{aligned} & 2.01 \mathrm{br} \mathrm{~d} \\ & (5.1) \end{aligned}$	$\begin{aligned} & 2.30 \mathrm{br} \mathrm{~d} \\ & (5.2) \end{aligned}$	$\begin{aligned} & 2.11 \mathrm{br} \mathrm{~d} \\ & (5.7) \end{aligned}$
5	1.21 s	1.11 s	1.02 s	1.04 s	1.13 s	1.04 s	1.10 s	1.89 br s	1.15 s
					(overlap)				(overlap)
7	$\begin{aligned} & 5.34 \mathrm{dd} \\ & (12.0,1.4) \end{aligned}$	$\begin{aligned} & 3.88 \mathrm{dd} \\ & (12.0,1.4) \end{aligned}$	$\begin{aligned} & 5.37 \mathrm{dd} \\ & (12.1,1.5) \end{aligned}$	$\begin{aligned} & 3.84 \mathrm{br} \mathrm{~d} \\ & (12.3) \end{aligned}$	$\begin{aligned} & 5.19 \mathrm{dd} \\ & (11.9,1.8) \end{aligned}$	$\begin{aligned} & 5.21 \mathrm{dd} \\ & (11.9,1.7) \end{aligned}$	$\begin{aligned} & 5.30 \mathrm{dd} \\ & (12.1,1.6) \end{aligned}$		$\begin{aligned} & 5.05 \mathrm{dd} \\ & (12.1,1.7) \end{aligned}$
8α	1.97 ddd	1.82 ddd	1.93 ddd	2.05 ddd	2.03 ddd	2.06 ddd	1.93 ddd	3.21 dd	2.02 ddd
8	(14.4, 3.6, 1.4)	(14.4, 3.4, 1.4)	(14.3, 3.7, 1.5)	(overlap)	(overlap)	(overlap)	(14.4, 3.8, 1.6)	(13.3, 4.3)	(overlap)
8β	2.39 ddd	2.19 ddd	2.33 ddd	2.29 ddd	2.20 ddd	2.24 ddd	2.34 ddd	2.58 dd	2.26 ddd
	(14.4, 12.0, 3.1)	(overlap)	(14.3, 12.1, 2.9)	(15.2, 12.3, 3.3)	(overlap)	(14.7, 11.9, 3.2)	(14.4, 12.1, 3.1)	(13.3, 4.1)	(14.9, 12.1, 3.1)
9	3.87 dd	3.76 dd	3.82 dd	5.19 dd	4.90 dd	4.89 dd	3.81 dd	5.02 dd	5.19 dd
	(3.6, 3.1)	(3.4, 3.2)	(3.7, 2.9)	(3.4, 3.3)	(3.4, 3.4)	(3.5, 3.2)	(3.8, 3.1)	$(4.3,4.1)$	(3.7, 3.1)
11	2.80 m	2.61 br m	$2.56 \text { ddd }$ (overlap)	$2.58 \text { ddd }$ (overlap)	$2.66 \text { ddd }$ (overlap)	$2.56 \text { ddd }$ (overlap)	2.61 br m	$\begin{aligned} & 2.41 \text { ddd } \\ & (5.2,3.4,1.4) \end{aligned}$	2.78 br m
12	(overlap) 1.15 s	0.88 s	$\begin{aligned} & \text { (overlap) } \\ & 1.10 \text { s } \end{aligned}$	$\begin{aligned} & \text { (overlap) } \\ & 0.89 \mathrm{~s} \end{aligned}$	(overlap) $1.11 \mathrm{~s}$	$\begin{aligned} & \text { (overlap) } \\ & 1.10 \text { s } \end{aligned}$	1.10 s	$\begin{aligned} & (5.2,3.4,1.4) \\ & 1.14 \mathrm{~s} \end{aligned}$	0.99 s
13	1.01 s	1.00 s	0.93 s	1.01 s	0.97 s	0.95 s	0.96 s	1.08 s	0.95 s
14	1.48 s	1.41 s	1.42 s	1.26 s	1.21 s	1.27 s	1.34 s	1.15 s	1.24 s
15	1.19 d	$1.15 \mathrm{~d}$	$1.15 \mathrm{~d}$	$1.14 \mathrm{~d}$	$1.15 \mathrm{~d}$	$1.15 \mathrm{~d}$	$1.14 \mathrm{~d}$	1.50 s	$1.16 \mathrm{~d}$

Table 4. ${ }^{13} \mathrm{C}$ NMR Data of Compounds 6, 13-17, 19-22, 24, 25, and 27-41 ${ }^{\text {a }}$

compd	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15
6	76.2	32.9	37.5	50.7	54.0	46.4	205.5	127.7	159.6	41.7	48.2	$26.2^{\text {b }}$	$26.3{ }^{\text {b }}$	24.2	21.3
13	75.9	33.1	37.3	45.0	56.5	36.5	70.8	35.9	78.0	43.1	40.2	17.5	26.9	21.9	21.5
14	75.9	33.3	37.5	45.4	56.8	35.6	73.1	35.8	75.5	44.2	39.6	18.6	26.7	22.4	21.6
15	76.2	33.3	37.5	45.3	56.9	36.5	69.9	38.9	75.9	44.0	39.3	17.5	27.0	22.5	21.5
16	74.0	35.8	37.8	45.6	57.0	35.7	73.7	35.8	75.8	44.3	42.2	18.8	26.7	22.4	21.8
17	78.4	36.3	37.4	45.3	56.9	36.5	70.9	35.9	74.5	43.3	43.0	17.5	26.9	21.9	21.6
19	75.3	32.8	37.4	45.7	54.4	46.6	210.5	41.7	77.1	43.4	42.1	24.3	22.6	21.9	21.5
20	75.5	32.4	37.4	46.6	56.0	36.6	75.1	43.0	212.1	53.3	43.6	23.6	25.7	17.8	21.2
21	74.3	41.0	74.3	52.3	50.0	36.6	75.4	43.0	211.6	53.2	43.8	23.7	25.7	18.7	30.9
22	74.5	35.9	37.6	44.8	55.2	39.1	150.3	126.1	206.3	52.4	45.1	27.4	27.5	17.9	21.2
24	74.6	35.9	37.6	46.8	56.5	37.3	73.9	47.2	214.3	53.6	46.4	22.0	26.2	17.7	21.3
25	74.5	35.6	37.6	45.9	56.5	37.3	73.8	47.5	214.6	53.6	47.2	21.5	26.2	17.6	21.4
27	74.8	35.8	37.6	51.0	54.3	46.4	205.9	127.4	160.6	41.9	51.3	26.3	26.3	24.2	21.4
28	75.8	32.9	37.6	44.6	54.9	39.2	150.2	126.1	205.8	52.2	42.4	$27.4{ }^{\text {b }}$	$27.7^{\text {b }}$	18.1	21.1
29	44.2	26.8	38.6	49.7	62.3	37.0	73.8	36.9	75.8	47.5	72.0	26.0	21.7	23.3	19.4
30	77.3	32.9	37.4	45.3	56.2	36.1	74.9	32.5	79.3	43.6	40.8	18.8	26.8	22.4	21.5
31	74.2	36.2	37.4	45.6	56.7	35.9	75.2	32.6	79.7	43.8	43.5	18.8	26.8	22.0	21.6
32	77.6	32.9	37.4	45.1	56.3	36.6	70.8	35.8	80.1	43.6	40.4	17.5	27.0	22.5	21.5
33	77.4	33.2	37.6	45.4	56.6	35.9	75.2	36.2	75.2	44.3	39.8	19.0	26.9	22.8	21.6
34	77.7	33.2	37.5	45.3	56.7	36.5	69.9	39.0	75.7	44.1	39.4	17.5	27.0	22.8	21.5
35	74.0	$35.8{ }^{\text {b }}$	37.8	45.7	57.0	36.2	75.9	$35.9{ }^{\text {b }}$	75.7	44.4	42.3	19.1	26.9	22.4	21.8
36	74.4	36.4	37.4	45.4	56.9	36.5	71.0	36.0	80.6	43.7	43.2	17.5	26.9	22.0	21.5
37	75.7	33.1	37.3	45.3	56.5	36.0	75.3	32.1	77.5	43.1	40.6	18.9	26.7	21.9	21.5
38	74.4	36.0	37.4	45.5	56.8	36.1	75.5	32.2	77.9	43.4	43.3	18.9	26.8	21.9	21.6
39	75.8	33.3	37.6	45.5	56.8	36.1	75.3	35.8	75.5	44.3	39.7	19.0	26.9	22.5	21.6
40	74.1	41.6	74.6	52.1	48.2	46.4	210.7	41.6	76.6	43.5	42.0	24.3	22.5	22.5	31.1
41	75.7	33.1	37.4	45.3	56.3	35.6	73.0	32.6	79.5	43.5	40.6	18.6	26.7	22.2	21.6

[^1] given in the Experimental Section.

21

Figure 2. Single-crystal X-ray structures of 21, 22, 25, and 28.
cm^{-1} and the UV absorption at 226 nm supported structure 22. Crystallization of $\mathbf{2 2}$ from ethanol afforded appropriate
crystals, which were submitted to an X-ray crystal analysis to confirm the structure (Figure 2).

The IR, HREIMS, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data as well as 2D NMR correlations of compounds $\mathbf{2 4}$ and $\mathbf{2 5}$ were very similar to each other. Detailed comparison of the NMR data for these compounds led us to conclude that compound 25 is the C-7 epimer of $\mathbf{2 4}$. Their ${ }^{1} \mathrm{H}$ NMR spectra (Table 2) showed the $\mathrm{H}-1$ and $\mathrm{H}-7$ signals as methine protons geminal to hydroxyl groups. Also, for both compounds, the carbonyl carbon signal correlated with the $\mathrm{Me}-14, \mathrm{H}-4$, $\mathrm{H}-11$, and $\mathrm{H}-7$ signals in their HMBC spectra, indicating that the carbonyl group was located at C-9. The above data and the relevant differences found in the ${ }^{1} \mathrm{H}$ NMR signals for the methylene protons $\mathrm{H}-8 \alpha$ and $\mathrm{H}-8 \beta$ [for 24: $\delta_{\mathrm{H}} 3.00$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,2.3 \mathrm{~Hz}, \mathrm{H}-8 \alpha$) and $2.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5$, $8.6 \mathrm{~Hz}, \mathrm{H}-8 \beta)$; for 25: $\delta_{\mathrm{H}} 2.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.3,9.1 \mathrm{~Hz}$, $\mathrm{H}-8 \alpha$) and $2.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.3,2.2 \mathrm{~Hz}, \mathrm{H}-8 \beta)$] indicated that compounds 24 and $\mathbf{2 5}$ are stereoisomers, the only difference being the relative configuration at C-7. NOESY correlations did not provide clear information on the stereochemistry at C-7; however crystallization of compound $\mathbf{2 5}$ from $\mathrm{CHCl}_{3} /$ hexane yielded crystals, which were subjected to X-ray analysis. As shown in Figure 2, this study provided unambiguous structural confirmation and demonstrated the α-orientation for the hydroxyl group at $\mathrm{C}-7$ in 25. Consequently, the orientation of this group in 24 is β, as in naturally occurring longipinene derivatives. ${ }^{7}$ It is noteworthy that in 25 the $\mathrm{H}-4\left(\delta_{\mathrm{H}} 2.25,1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=\right.$ 5.4 Hz) and $\mathrm{H}-11\left(\delta_{\mathrm{H}} 2.73,1 \mathrm{H}\right.$, ddd, J $=5.4,3.0,1.2 \mathrm{~Hz}$) signals appeared at the typical chemical shift values of longipinenes, while surprisingly in 24 these signals appeared collapsed as a broad singlet at $\delta_{\mathrm{H}} 2.52$. In 25, the assignment of the C-4 ($\delta_{C} 45.9$) and C-11 ($\delta_{C} 47.2$) signals was achieved from the HETCOR data. In 24, these assignments were made through an HMBC experiment, where $\mathrm{C}-4$ ($\delta_{\mathrm{C}} 46.8$) correlated with $\mathrm{Me}-14$ and $\mathrm{Me}-15$, while $\mathrm{C}-11$ ($\delta_{\mathrm{C}} 46.4$) correlated only with $\mathrm{Me}-14$.

While the hydroxyl group at C-7 in 24 was easily removed to give the α, β-unsaturated ketone 22, treatment of $\mathbf{2 6}$ under the same reaction conditions unexpectedly afforded epimer ketodiol 25 instead of 27. These findings can be explained by a base-induced transannular 1,3hydride shift from C-9 to C-7 in 26 to give 25. The α-orientation of the hydroxyl group at C-7 in ketodiol 25, clearly observed in Figure 2, is in agreement with the required suprafacial stereochemistry for such hydride migration. Examples of base-induced transannular 1,4-and 1,5-hydride shifts in ketols have been frequently described, ${ }^{20}$ while the 1,3-hydride transfer has been scarcely observed. ${ }^{21}$

27

29

Treatment of the mixture of ketones $\mathbf{1 8} \mathbf{- 2 0}$ with alumina/ $\mathrm{H}_{2} \mathrm{O}(1.5: 1.0 \mathrm{w} / \mathrm{w})$ at $90^{\circ} \mathrm{C}$ during 72 h afforded the isomeric α, β-unsaturated ketones 6 and 28 in 0.5% and 64% yields,
respectively. Under these reaction conditions, partial hydrolysis of the acetate group at C-1 in $\mathbf{2 8}$ was observed, also providing the hydrolyzed α, β-unsaturated ketone 22 in 14% yield.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 28 (Tables 2 and 4) were similar to those of 22, except for the presence of an acetate group at C-1 in $28\left[\mathrm{H}-1\left(\delta_{\mathrm{H}} 5.28,1 \mathrm{H}\right.\right.$, ddd, $\mathrm{J}=9.9,5.1,3.1$ Hz); C-1 ($\delta_{\mathrm{C}} 75.8$), OAc ($\delta_{\mathrm{H}} 2.02,3 \mathrm{H}, \mathrm{s} ; \delta_{\mathrm{C}} 170.6,21.4$)]. The molecular structure of $\mathbf{2 8}$ was confirmed by X-ray crystallography, whose perspective view is presented in Figure 2.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound 6 (Tables 1 and 4) showed the expected resonances for the α, β-unsaturated ketone: two vinylic protons at $\delta_{\mathrm{H}} 5.83(\mathrm{H}-8)$ and 6.54 (H-9), which correlated with signals at $\delta_{\mathrm{C}} 127.7$ (C-8) and 159.6 (C-9) in the HETCOR diagram. The location of the keto group at C-7 was evident from the HMBC correlation between the carbonyl signal at $\delta_{\mathrm{C}} 205.5$ and the gemdimethyl group signal at $\delta_{\mathrm{H}} 1.14$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-12, \mathrm{Me}-13$). The $\mathrm{H}-1$ signal at $\delta_{\mathrm{H}} 5.23(1 \mathrm{H}$, ddd, $\mathrm{J}=9.8,5.5,2.8 \mathrm{~Hz})$ and the singlet at $\delta_{H} 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$ indicated that the acetyl group remained at the C-1 position. In addition, the IR [1724 ($\mathrm{C}=\mathrm{O}$ acetate), $1652 \mathrm{~cm}^{-1}$ (α, β-unsaturated cydoheptenone)] and UV (244 nm) data were in agreement with structure 6.

Once the preparation of 6 could be completed, it was evident that a very limiting step was the selective generation of the diacetyloxy derivative $\mathbf{1 3}$ during the acetylation of $\mathbf{1 0}$. To increase the yield of $\mathbf{1 3}$, we explored variations of the acetylation conditions. In a first attempt, triol 10 was treated with AcCl (2.15 equiv) in acetone at room temperature during 24 h , to afford the mixture of diacetates 12-14 (16\%), monoacetate 15 (8\%), and trace amounts of a new unexpected uruapane ${ }^{13}$ derivative 29. Analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 29 (Tables 2 and 4) as well as its 2D NMR correlations revealed that it possesses an uruapane-type skeleton ${ }^{13}$ with secondary hydroxyl groups at C-9 and C-11 and an acetyloxy group at C-7.

To avoid rearrangement-promoting acid conditions, we used 4-(dimethylamino)pyridine (DMAP) as the neutralizing agent. Thus, when triol 10 was treated with AcCl (2.15 equiv) and DMAP in acetone, a mixture of diacetates 12-14 was obtained in 33\% yield, together with the triacetyloxy compound 11 (24\%), the monoesterified products 15, 16, and 17 (20\%, 7\%, and 2%, respectively), and starting material 10 (12\%). J ones oxidation of the mixture 12-14 and subsequent elimination of the β-acetyl oxy group in alumina yielded the desired α, β-unsaturated ketone 6 in 6% yield, together with the isomeric ketone 28 (41\%), and a mixture of the hydrolyzed products 22 and 27 (20\%).

Considering the difference in reactivity among the secondary hydroxyl groups in triol 10, a more efficient methodology for the preparation of 6 using a protective group was devised. Thus, triol 10 was treated with pnitrobenzoyl chloride (1.4 equiv) in anhydrous pyridine at $-4{ }^{\circ} \mathrm{C}$ for 24 h to give the tri-, di-, and monoesterified products 30-36, which were separated by column chromatography. From this reaction, the desired C-7 monoester 35 was obtained in 10\% yield. Thus, after the hydroxyl group at C-7 was protected as a p-nitrobenzoate, acetylation of the remaining hydroxyl groups at C-1 and C-9 was carried out with AcCl under reflux for 10 min , affording triester 37 in very good yields (95\%). Subsequent selective hydrolysis of the p-nitrobenzoate group was achieved with potassium hydroxide (1.6 N) at room temperature for 7 min to yield diacetate 13 in 63\% yield. Minor amounts of diesters 38 (2\%) and 39 (1\%), monoesters 15 (3\%) and 17
(23\%), and triol 10 (2\%) were also isolated. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 30-39 are listed in Tables 2-4.

$30: \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=p-\mathrm{NO}_{2} \mathrm{Bz}$
31 : $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{R}_{3}=p-\mathrm{NO}_{2} \mathrm{Bz}$
32 : $\mathrm{R}_{1}=\mathrm{R}_{3}=p-\mathrm{NO}_{2} \mathrm{Bz} ; \mathrm{R}_{2}=\mathrm{H}$
33 : $\mathrm{R}_{1}=\mathrm{R}_{2}=p-\mathrm{NO}_{2} \mathrm{Bz} ; \mathrm{R}_{3}=\mathrm{H}$
$34: \mathrm{R}_{1}=p-\mathrm{NO}_{2} \mathrm{Bz} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
35 : $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{2}=p-\mathrm{NO}_{2} \mathrm{Bz}$
$36: \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=p-\mathrm{NO}_{2} \mathrm{Bz}$
$37: \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{Ac} ; \mathrm{R}_{2}=p-\mathrm{NO}_{2} \mathrm{Bz}$
$38: \mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=p-\mathrm{NO}_{2} \mathrm{Bz} ; \mathrm{R}_{3}=\mathrm{Ac}$
$39: R_{1}=\mathrm{Ac} ; \mathrm{R}_{2}=p-\mathrm{NO}_{2} \mathrm{Bz} ; \mathrm{R}_{3}=\mathrm{H}$
$41: \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ac} ; \mathrm{R}_{3}=p-\mathrm{NO}_{2} \mathrm{Bz}$

40

42
J ones oxidation of the hydroxyl group in $\mathbf{1 3}$ gave ketone 19 in 72% yield. Under these conditions, a hydroxyl group was introduced at C-3 in $\mathbf{1 9}$ to give compound $\mathbf{4 0}$ in 12\% yield in a similar way as observed during the oxidation of 20. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 19 (Tables 1 and 4) confirmed the presence of a carbonyl group ($\delta_{\mathrm{C}} 210.5$) whose position at C-7 was deduced from the HMBC cross-peaks between $\mathrm{C}-7 / \mathrm{Me}-12, \mathrm{Me}-13$. The individual assignment of $\mathrm{H}-8 \beta$ at $\delta_{\mathrm{H}} 3.18$ was deduced by NOESY correlation between $\mathrm{H}-8 \beta / \mathrm{H}-4$, and consequently the signal at $\delta_{\mathrm{H}} 2.53$ is due to $\mathrm{H}-8 \alpha$. The molecular formula of $40, \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6}$ (HREIMS, m/z 352.1888), was consistent with the presence of an additional hydroxyl group as compared to 19. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 40 (Tables 3 and 4) closely resembled those of 19, except for the signals of $\mathrm{H}-2 \alpha$ (δ_{H} 2.58) and $\mathrm{H}-2 \beta$ ($\delta_{\mathrm{H}} 1.90$), which appeared as two double doublets, and that of $\mathrm{Me}-15$ ($\delta_{H} 1.50$), which was observed as a singlet. In the ${ }^{13} \mathrm{C}$ NMR spectra of 40 the signal of C-3 ($\delta_{c} 74.6$) appeared as a quaternary carbon, which correlated with the proton Me -15 signal in the FLOCK ${ }^{17}$ diagram. A NOESY cross-peak from Me-15 to Me-14 indicated the β-Me-15 orientation and, consequently, the $\alpha-\mathrm{OH}$ orientation and the R configuration at $\mathrm{C}-3$.

Finally, removal of the acetate group at C-9 in 19 with alumina/ $\mathrm{H}_{2} \mathrm{O}$ afforded the desired α, β-unsaturated ketone 6 in 87\% yield, together with the hydrolyzed analogue 27 in 5% yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 27 (Tables 2 and 4) are similar to those of 6 except for the absence of the acetyl group signals, the presence of a broad $\mathrm{D}_{2} \mathrm{O}$ exchangeable proton signal ($\delta_{H} 1.84$), and the shielding of the $\mathrm{H}-1$ signal from $\delta_{\mathrm{H}} 5.23$ in 6 to $\delta_{\mathrm{H}} 4.32$ in 27. This information indicated that $\mathbf{2 7}$ is the 1-hydroxy analogue of 6 .

By using this methodology, the selective preparation of diacetate 13 and ketone 19, previously obtained in mixtures
(12-14 and 18-20) was achieved. Similarly, diacetate 14 and ketone 20 were selectively prepared from the pnitorobenzoyloxy derivative 36 . Acetylation of 36 with AcCl and subsequent selective hydrolysis in the resulting triester 41 afforded diacetate 14. J ones oxidation of $\mathbf{1 4}$ gave ketone 20. The selective preparation of these compounds allowed us to determine their physical and spectroscopic data. The preparation of diacetate $\mathbf{1 2}^{13}$ and ketone $\mathbf{1 8}^{16}$ was previously described.

Acetylation of the hydroxyl groups of 36 was evident from the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 41 (Tables 3 and 4). On the other hand, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{2 0}$ (Tables 1 and 4) indicated the presence of a carbonyl group at C-9 ($\delta_{\mathrm{C}} 212.1$), which was confirmed by the HMBC correlations of $\mathrm{C}-9$ to $\mathrm{H}-4, \mathrm{Me}-14$, and $\mathrm{H}-7$.
Photochemical Reactivity of 6. In view of our interest in inducing new molecular rearrangements and after the successful preparation of 6 , we proceeded to explore its photochemical reactivity. UV irradiation of $\mathbf{6}$ in cyclohexane using a quartz immersion low-pressureHg lamp for 15 min resulted in a complex mixture of products, as judged by the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude material. Silica gel chromatography followed by high-performance liquid chromatography (HPLC) using a reversed-phase column and $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (13:7) as eluent led to the purification of compounds 7, 8, and 9 in 5\%, 1\%, and 3\% yields, respectively.

The photorearrangements of the α, β-unsaturated cycloheptenone $\mathbf{6}$ can be explained considering the mechanism outlined in Scheme 2. The photoisomerization of $\mathbf{6}$ into the β, γ-unsaturated ketone 7 could proceed via a [1,3]-shift of the $C(4)-C(10)$ bond through the diradical species 6 a. Compound 8 could be a secondary photoproduct derived from the β, γ-unsaturated ketone 7 and formed by a $[1,3]-$ acyl shift. ${ }^{22}$ The chiral centers at C-5 and C-11 present in 6 might induce the stereochemistry of $\mathbf{7}$ and 8 . On the other hand, formation of compound 9 appears to involve a hydrogen migration of $\mathrm{H}-5$ in species $\mathbf{6}$ a to give species $\mathbf{6} \mathbf{b}$ and subsequent $\mathrm{C}(5)-\mathrm{C}(8)$ bonding on the β-side of the molecule. The preference in the generation of this diasteroisomer may be due to the lack of the gem-dimethyl group steric interaction, which could be relevant if the cyclobutane ring closure occurs on the α-side of the molecule. The proposed mechanism is consistent with those described for analogous photorearrangements, including those of verbenone (42) ${ }^{23-26}$ and (4R,5S,7S,8R,9S,10R,11R)-7,8,9-tri-acetyloxy-1-oxol ongi pin-2-ene (1). ${ }^{14,15}$

During the preparation of compound 6, concomitant formation of the isomeric α, β-unsaturated ketone $\mathbf{2 8}$ was achieved in a good yield. Therefore, it was interesting to explore if the latter compound might undergo a photorearrangement under the same reaction conditions as those used for 6. When a cydohexane solution of compound 28 was irradiated using a quartz immersion low-pressure Hg lamp, no reaction was observed and starting material was recovered even when the irradiation was maintained for 2 h .
The differences in the photochemical behavior between the isomeric ketones $\mathbf{6}$ and $\mathbf{2 8}$ may be due to the differences in the chromophores of both structures. In 6, the α, β unsaturated carbonyl group is conjugated to the fourmembered ring, ${ }^{27,28}$ while in 28, the cyclobutane is crossconjugated to the enone system.

Structure Elucidation of Photoproducts 7-9 Using Molecular Modeling and NMR Spectroscopy. The structures of 7-9 were mainly determined by analysis of 1D and 2D NMR data as well as by HREIMS. The

Table 5. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC Data of Compounds 7-9 ${ }^{\text {a }}$

position	compound 7			compound 8			compound 9		
	δ_{H}	δ_{C}	HMBC (C to H)	δ_{H}	$\delta_{\text {C }}$	HMBC (C to H)	δ_{H}	$\delta_{\text {c }}$	HMBC (C to H)
1	$\begin{aligned} & 5.00 \mathrm{ddd} \\ & (11.8,4.6,3.0) \end{aligned}$	75.5	2, 11	$\begin{aligned} & 5.25 \text { ddd } \\ & (11.9,6.4,6.0) \end{aligned}$	75.0	2	$\begin{aligned} & 5.41 \mathrm{ddd} \\ & (5.4,3.4,2.3) \end{aligned}$	69.3	2
2α	$\begin{aligned} & 1.78 \text { ddd } \\ & (12.3,4.9,4.6) \end{aligned}$	33.3	15	1.75 ddd $(12.3,6.4,3.5)$	32.9	15	$\begin{aligned} & 2.05 \text { ddd } \\ & (14.8,8.8,5.4) \end{aligned}$	35.5	4, 15
β	$\begin{aligned} & 1.59 \text { ddd } \\ & (12.3,12.0,11.8) \end{aligned}$			$\begin{aligned} & 1.63 \mathrm{ddd} \\ & (12.3,12.1,11.9) \end{aligned}$			$\begin{aligned} & 1.35 \mathrm{ddd} \\ & (14.8,7.9,2.3) \end{aligned}$		
3	$2.05 \mathrm{~m}$ (overlap)	31.8	2, 15	1.84 m	33.8	15	1.58 m	25.7	2, 4, 15
4α	$2.05 \mathrm{~m}$ (overlap)	38.6	2, 9, 15	$2.26 \mathrm{~m}$ (overlap)	38.3	15	$\begin{aligned} & 2.00 \mathrm{dd} \\ & (13.3,3.0) \end{aligned}$	33.8	2, 15
β							$\begin{aligned} & 1.67 \mathrm{dd} \\ & (13.3,13.2) \end{aligned}$		
5	$2.02 \mathrm{~m}$ (overlap)	48.7	11	1.94 br m	48.2	12, 13		46.0	4, 9, 12, 13
6		48.9	8, 12, 13		48.2	12, 13		61.9	4, 11, 12, 13
7		213.6	12, 13		214.4	12, 13, 14		215.1	12, 13
8	2.76 br m	50.0	4, 9	$\begin{aligned} & 5.67 \text { ddd } \\ & (9.5,4.8,1.2) \end{aligned}$	128.6		3.67 br m	74.6	4, 9
9	$\begin{aligned} & 5.49 \mathrm{br} \mathrm{~d} \\ & (6.3) \end{aligned}$	121.2	14	$\begin{aligned} & 5.44 \mathrm{dd} \\ & (9.5,1.7) \end{aligned}$	132.2	14	$\begin{aligned} & 5.38 \mathrm{ddq} \\ & (2.8,1.5,1.5) \end{aligned}$	123.1	14
10		137.9	5, 11, 14		53.8	14		143.8	14
11	$\begin{aligned} & 2.53 \mathrm{br} \mathrm{t} \\ & (2.8) \end{aligned}$	42.1	2, 9, 14	$\begin{aligned} & 2.25 \mathrm{~m} \\ & \text { (overlap) } \end{aligned}$	41.2	14	2.70 br m	52.1	2, 4, 9, 14
12	1.10 s	26.0	13	1.07 s	26.0	13	1.19 s	20.0	13
13	1.18 s	23.8	12	1.26 s	24.9	12	1.22 s	22.3	14
14	$\begin{aligned} & 1.70 \mathrm{~d} \\ & (1.4) \end{aligned}$	23.5	9	1.23 s	18.0		$\begin{aligned} & 1.72 \text { ddd } \\ & (2.2,1.5,0.8) \end{aligned}$	14.9	
15	$\begin{aligned} & 1.06 \mathrm{~d} \\ & (6.6) \end{aligned}$	20.0	2	$\begin{aligned} & 0.95 \mathrm{~d} \\ & (6.9) \end{aligned}$	19.0		$\begin{aligned} & 0.98 \mathrm{~d} \\ & (6.3) \end{aligned}$	23.4	2

[^2]Table 6. Calculated Dihedral Angles (deg) and Calculated and Observed Vicinal Coupling Constants (Hz) for Compounds 7-9

$\mathrm{H}_{\mathrm{x}}-\mathrm{C}-\mathrm{C}-\mathrm{H}_{\mathrm{y}}$	compound 7			compound 8			compound 9		
	$\phi_{\text {DFT }}{ }^{\text {a }}$	$\mathrm{J} \mathrm{calc}^{\text {b }}$	J obs ${ }^{\text {c }}$	$\phi_{\text {DFT }}{ }^{\text {a }}$	J calc ${ }^{\text {b }}$	J obs ${ }^{\text {c }}$	$\phi_{\mathrm{DFT}}{ }^{\text {a }}$	J calc ${ }^{\text {b }}$	J obs ${ }^{\text {c }}$
1,2 α	-55.3	4.9	4.6	-48.6	5.8	6.4	35.9	5.3	5.4
1,2 2	-172.5	11.1	11.8	-165.8	10.5	11.9	-77.9	1.8	2.3
1,11	64.4	2.7	3.0	47.4	5.2	6.0	-55.5	2.4	3.4
$2 \alpha, 3$	48.2	5.1	4.9	57.4	3.7	3.5	25.7	8.6	8.8
2 β,3	166.0	11.8	12.0	175.6	12.3	12.1	141.9	8.3	7.9
3,4 ${ }^{\text {a }}$	-47.6	4.7	d	-65.3	2.1	d	-69.9	2.0	3.0
3,4 ${ }^{\text {3 }}$							174.0	12.2	13.2
4,5	54.6	3.6	d	62.3	2.4	d			
4,8	-55.1	3.5	d	-42.1	5.7	4.8			
5,11	-61.0	2.6	d	-54.3	3.8	d			
8,9	26.7	8.5	6.3	3.9	10.7	9.5	54.4	3.8	2.8
rms		1.0			0.9			0.8	

${ }^{\text {a }}$ From density functional theory at the $\mathrm{pBP} / \mathrm{DN} * *$ level. ${ }^{19}{ }^{\mathrm{b}}$ From calculated dihedral angles. ${ }^{29,30}$ c Measured at 300 MHz in CDCl_{3}. ${ }^{\mathrm{d}}$ Signal broadening or overlapping precluded the measurements.
correlations found in the NOESY spectra in combination with molecular modeling, and taking into account the absolute configuration of $\mathbf{6}$, led to the full stereochemical assignment of the stereogenic centers present in 7-9. The minimum energy conformations were obtained by molecular mechanics calculations (MMX) ${ }^{18}$ followed by geometry optimization using density functional theory computation ${ }^{19}$ at the pBP/DN** level of theory. The good correspondence between the calculated ${ }^{29,30}$ and observed ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants (Table 6) all owed us to validate the stereostructures of the new carbocyclic compounds 7-9, as well as their conformation in solution (Figure 3).

Compound $\mathbf{7}$ had the molecular formula $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$ as deduced from HREIMS in combination with ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Table5). Interpretation of its COSY, HETCOR, HSQC, HMBC, and NOESY spectra revealed that $\mathbf{7}$ has a quirogane-type skeleton. ${ }^{12}$ The presence of a γ-methyl $-\beta, \gamma$ unsaturated ketone moiety was evidenced by the IR band
at $1726 \mathrm{~cm}^{-1}$ and UV absorption at 298 nm . The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals at $\delta_{\mathrm{H}} 2.76,5.49$, and 1.70 for $\mathrm{H}-8$, $\mathrm{H}-9$, and $\mathrm{Me}-14$, respectively, while the ${ }^{13} \mathrm{C}$ NMR spectrum displayed the corresponding signals at δ_{C} 213.6, 137.9, 121.2, 50.0 , and 23.5 for $\mathrm{C}-7, \mathrm{C}-10, \mathrm{C}-9, \mathrm{C}-8$, and $\mathrm{C}-14$, respectively. The ${ }^{1} \mathrm{H}$ NMR spectra also displayed signals for one proton geminal to an acetate group at $\delta_{\mathrm{H}} 5.00$ (H 1), one acetate methyl group at $\delta_{\mathrm{H}} 2.05$, two methylene and four methine protons, and one secondary and two tertiary methyl groups, in agreement with the proposed structure, which was further supported by the correlations found in the HMBC spectrum of 7 (Table 5). In particular, the C(4)C(8) bond was confirmed by the COSY interactions between $\mathrm{H}-4$ and $\mathrm{H}-8$ as well as the HMBC correlation between C-4 and $\mathrm{H}-9$ (Table5). The above data and NOESY interactions between $\mathrm{H}-2 \beta$ and $\mathrm{Me}-14 ; \mathrm{H}-1$ and $\mathrm{H}-5 ; \mathrm{H}-5$ and $\mathrm{Me}-12$; $\mathrm{H}-8$ and $\mathrm{Me}-15 ; \mathrm{H}-11$ and $\mathrm{Me}-13$; and $\mathrm{Me}-13$ and $\mathrm{Me}-14$

Figure 3. Lowest energy conformation using density functional theory and relevant NOESY correlations for 7-9.
(Figure 3) allowed us to establish the structure of 7 as (1R,3S,4S,5S,8S,11R)-1-acetyloxy-7-oxoquirog-9-ene.

Compound 8 had the molecular formula $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$ as indicated by HREIMS and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Table 5). The IR band at $1726 \mathrm{~cm}^{-1}$ and UV maximum absorption at 290 nm together with the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data indicated the presence of an α-methyl- β, γ-unsaturated ketone moiety. The ${ }^{1} \mathrm{H}$ NMR spectra also showed signals due to the same kind of protons as those observed for 7: one proton geminal to the acetyloxy group, one acetate methyl group, two methylene and four methine protons, and one secondary and two tertiary methyl groups. However, analysis of 2D NMR data demonstrated that compound 8 possesses the same prenopsane ${ }^{31}$ skel eton as that of conicumol ${ }^{32}$ and prenopsanol. ${ }^{31}$ The COSY interaction between $\mathrm{H}-4$ and $\mathrm{H}-8$ in combination with the HMBC crosspeak correlations from $\mathrm{C}-7$ to $\mathrm{Me}-12, \mathrm{Me}-13$, and $\mathrm{Me}-14$
(Table5) were in agreement with the presence of the $C(4)-$ $C(8)$ and $C(7)-C(10)$ bonds. An APT experiment was very useful for the individual assignment of the C-5 and the quaternary carbon C-6 signals, which had a very similar chemical shift at $\delta_{\mathrm{C}} 48.2$. Individual assignments of the methylenic protons at $\mathrm{C}-2$ were confirmed by comparison of the experimental ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constant values with those obtained from the DFT ${ }^{19}$ minimum energy conformation (Table 6). NOESY interactions between H-4 and $\mathrm{Me}-12$ and between $\mathrm{H}-11$ and $\mathrm{Me}-13$ were consistent with the (1R,3S,4R,5S,10R,11R)-1-acetyloxy-7-oxoprenops-8-ene structure of 8 (Figure 3).

HREIMS and NMR data revealed that compound 9 has the $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$ molecular formula. Its IR spectrum showed a band at $1764 \mathrm{~cm}^{-1}$, which supported the existence of a cyclobutanone moiety. The presence of a γ-methyl $-\beta, \gamma$ unsaturated ketone moiety was demonstrated by the UV absorption at $\lambda_{\max } 305 \mathrm{~nm}$ and by the ${ }^{1} \mathrm{H}$ NMR [$\delta_{H} 3.67$ (H-8), $5.38(\mathrm{H}-9), 1.72$ ($\mathrm{Me}-14$)] and ${ }^{13} \mathrm{C}$ NMR signals [δ_{C} 215.1 (C-7), 74.6 (C-8), 123.1 (C-9), 143.8 (C-10), 14.9 (Me14)]. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 5) also showed signals due to a methine-bearing acetyloxy group [$\delta_{\mathrm{H}} 5.41$ (H-1), 1.97 (OAc); $\delta_{c} 69.3$ (C-1), 170.3, 21.3 (OAc)], two methylenes [$\delta_{\mathrm{H}} 2.05(\mathrm{H}-2 \alpha), 1.35(\mathrm{H}-2 \beta), 2.00(\mathrm{H}-4 \alpha), 1.67$ ($\mathrm{H}-4 \beta$); $\delta_{\mathrm{c}} 35.5$ (C-2), 33.8 (C-4)], one secondary methyl group [$\delta_{H} 1.62-1.50(\mathrm{H}-3), 0.98(\mathrm{Me}-15)$; $\delta_{\mathrm{C}} 25.7(\mathrm{C}-3), 23.4$ (C-15)], and a gem-dimethyl group on a quaternary carbon [$\delta_{H} 1.19$ ($\mathrm{Me}-12$), 1.22 ($\mathrm{Me}-13$); $\delta_{\mathrm{C}} 61.9$ (C-6), 20.0 (C-12), 22.3 (C-13)], a methine [$\delta_{H} 2.70$ (H-11); $\delta_{C} 52.1$ (C-11)], and a quaternary carbon $\delta_{C} 46.0$ (C-5). The individual assignments of the methylene protons $\mathrm{H}-2 \alpha$ and $\mathrm{H}-2 \beta$ were confirmed on the basis of calculated and observed ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants (Table 6), while those of $\mathrm{H}-4 \alpha$ and $\mathrm{H}-4 \beta$ were determined from the NOESY spectrum. Thus, the signal at $\delta_{\mathrm{H}} 2.00$ showed an interaction with the signal for $\mathrm{Me}-12$ and was assigned to $\mathrm{H}-4 \alpha$ (Figure 3). Consequently, the signal at $\delta_{\mathrm{H}} 1.67$ corresponded to $\mathrm{H}-4 \beta$. HMBC correl ations between $\mathrm{C}-5$ and $\mathrm{H}-4, \mathrm{H}-9, \mathrm{Me}-12, \mathrm{Me}-13$; between $\mathrm{C}-6$ and $\mathrm{H}-4, \mathrm{H}-11, \mathrm{Me}-12, \mathrm{Me}-13$; and between $\mathrm{C}-8$ and $\mathrm{H}-4$ confirmed the presence of the $\mathrm{C}(5)-\mathrm{C}(4), \mathrm{C}(5)-\mathrm{C}(6)$, $\mathrm{C}(5)-\mathrm{C}(8)$, and $\mathrm{C}(5)-\mathrm{C}(11)$ bonds. The configuration at $\mathrm{C}-5$ was determined by NOESY interactions between $\mathrm{H}-4 \alpha$ and $\mathrm{H}-8$ and between $\mathrm{H}-11$ and $\mathrm{Me}-13$ (Figure 3). The above data and a literature search revealed that the structure of 9 has a novel sesquiterpenoid skeleton, which we named patzcuarane. It is noteworthy that the carbocyclic skeleton of 9 resembles that of α - and β-panasinsene, main components of the essential oil of the roots of Panax ginseng. ${ }^{33}$

Experimental Section

General Experimental Procedures. Melting points were determined on a Fisher-J ohns apparatus and are uncorrected. Optical rotations were determined on a Perkin-Elmer 241 polarimeter. UV spectra were obtained on a Perkin-Elmer Lambda 12 spectrophotometer. UV spectra of compounds 30, 31, and 33 were measured in $\mathrm{CH}_{3} \mathrm{CN}$ because they were insoluble in EtOH. IR spectra were recorded on a Perkin-Elmer 16F PC spectrophotometer. NMR measurements were recorded on Varian Associates XL-300GS and Mercury 300 spectrometers, with the NOESY, HMQC, and HMBC experiments done on the latter instrument. Chemical shifts (δ) are given in ppm rel ated to tetramethylsilane. EIMS were recorded at 20 eV on a Hewlett-Packard 5989A spectrometer. HREIMS were measured at the UCR Mass Spectrometry Facility, University of California, Riverside, on a VG 7070 high-resolution mass spectrometer. Column chromatography refers to flash chromatography ${ }^{34}$ using the indicated solvent mixture and silica gel Merck grade 60 (230-400 mesh). Anhydrous pyridine was
freshly distilled from a BaO suspension under argon. All commercially available reagents were used as received. All of the sol vents employed were spectral or HPLC grade or were distilled from glass prior to use. HPLC separations were carried out employing a semi preparative Varian Dynamax C_{18} (5 mm) reversed-phase column ($10 \times 250 \mathrm{~mm}$) with a precolumn ($10 \times 50 \mathrm{~mm}$), using $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ 65:35 (flow rate, $3 \mathrm{~mL} /$ min) as the mobile phase on a Varian ProStar 215 solvent delivery module and a Varian ProStar 350 refractive index detector, both controlled by a PC with the Star WS V5 Chromatography Workstation software.

Computational Methods. Preliminary structure refinements were achieved by using MMFF94 force-field calculations as implemented in the PC Spartan Pro molecular modeling program (Wavefunction, Inc., Irvine, CA). Subsequent geometry optimizations were carried out with the same program using density functional theory (DFT) at the pBP/DN** level.

Acetylation of $\mathbf{1 0}$ with $\mathbf{A c}_{\mathbf{2}} \mathbf{O}$. A solution of triol $\mathbf{1 0}^{\mathbf{1 6}}$ (500 $\mathrm{mg}, 2.0 \mathrm{mmol})$ in pyridine (3 mL) was treated with a solution of $\mathrm{Ac}_{2} \mathrm{O}(0.4 \mathrm{~mL}, 4.2 \mathrm{mmol})$ in pyridine $(1.1 \mathrm{~mL})$. The reaction mixture was stored at $-20^{\circ} \mathrm{C}$ for 21 days, poured over ice/ $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc. The organic layer was washed with dilute $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, aqueous NaHCO_{3}, and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was purified by column chromatography on silica gel. Fractions that eluted with EtOAc/hexane (2:3) gave $\mathbf{1 1}^{16}$ ($130 \mathrm{mg}, 17 \%$) and the mixture of $12-14$ ($365.5 \mathrm{mg}, 55 \%$). Fractions eluting with EtOAc/hexane (4:1) afforded $\mathbf{1 5}$ (90 mg , $15 \%)$, 16 ($40 \mathrm{mg}, 7 \%$), and $\mathbf{1 7}$ ($10 \mathrm{mg}, 2 \%$). Starting material 10 (20 mg, 4\%) was recovered from fractions eluting with MeOH/EtOAc (1:19).
(1R,3S,4S,5S,7R ,9R ,10R ,11R)-1-Acetyloxy-7,9-dihydroxylongipinane (15): white solid; mp $173-175{ }^{\circ} \mathrm{C}$; $[\alpha]_{589}$ $+12^{\circ},[\alpha]_{578}+14^{\circ},[\alpha]_{546}+15^{\circ},[\alpha]_{436}+28^{\circ},[\alpha]_{365}+46^{\circ}$ (c 0.17 , $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3614,3466(\mathrm{OH}), 1720$ (C=O acetate), $1258(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), seeTable 1 and $\delta 2.30(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 75.4$ MHz), see Table 4 and $\delta 170.8$ ($\mathrm{C}=\mathrm{O}$ acetate), 21.4 (Me acetate); EIMS m/z 278 [M - ($\left.\left.\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}(0.1), 263(0.4), 236(5)$, 218 (8), 203 (12), 175 (32), 121 (43), 107 (42), 95 (100), 81 (23), 69 (30), 55 (13), 43 (43); HRDCIMS (NH_{3}) m/z 314.2330 (cal cd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{NH}_{4}{ }^{+}, 314.2331$).
(1R,3S,4S,5S,7R ,9R,10R,11R)-7-Acetyloxy-1,9-dihydroxylongipinane (16): white solid; mp 168-170 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{589}$ $+13^{\circ},[\alpha]_{578}+14^{\circ},[\alpha]_{546}+17^{\circ},[\alpha]_{436}+32^{\circ},[\alpha]_{365}+54^{\circ}$ (c 0.17 , $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3604,3448(\mathrm{OH}), 1726$ (C=O acetate), $1260(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ; 1 \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, seeTable 1 and $\delta 3.12(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 75.4$ MHz), see Table 4 and $\delta 171.0$ ($\mathrm{C}=\mathrm{O}$ acetate), 21.4 (Me acetate); EIMS m/z 296 [M] ${ }^{+}$(0.1), 278 (1), 254 (2), 236 (13), 218 (19), 203 (45), 175 (51), 159 (43), 123 (61), 109 (84), 95 (94), 81 (46), 69 (71), 55 (37), 43 (100); HRDCIMS $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ 314.2337 (calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{NH}_{4}{ }^{+}, 314.2331$).
(1R ,3S,4S,5S,7R ,9R ,10R ,11R)-9-Acetyloxy-1,7-dihydroxylongipinane (17): white solid; mp 136-138 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{589}$ $+15^{\circ},[\alpha]_{578}+16^{\circ},[\alpha]_{546}+18^{\circ},[\alpha]_{436}+32^{\circ},[\alpha]_{365}+54^{\circ}(c 0.15$, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3612,3446(\mathrm{OH}), 1720(\mathrm{C}=\mathrm{O}$ acetate), $1252(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, seeTable 1 and $\delta 2.06$ (1H , br s, OH), $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4 and $\delta 170.9(\mathrm{C}=0$ acetate), 21.3 (Me-acetate); EIMS m/z 296 [M]+ (0.2), 278 (1), 254 (2), 236 (15), 218 (22), 203 (49), 175 (56), 159 (49), 123 (65), 109 (89), 95 (98), 69 (74), 55 (39), 43 (100); HRDCIMS $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 314.2334$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{NH}_{4}{ }^{+}, 314.2331$).

Oxidation of the Mixture of 12-14. A solution of the 12-14 mixture ($700 \mathrm{mg}, 2.1 \mathrm{mmol}$) in glacial AcOH (7 mL) was treated with a solution of $\mathrm{CrO}_{3}(700 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stored at room temperature for 2 h , poured over ice/ $\mathrm{H}_{2} \mathrm{O}$, and extracted with diethyl ether. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After solvent evaporation, the residue was chromatographed on silica gel using EtOAc/hexane (1:4) as eluent to give a mixture of 18-20 ($475 \mathrm{mg}, 68 \%$) and compound 21 ($60 \mathrm{mg}, 8 \%$).
(1R,3R,4S,5S,7R,10R,11R)-1,7-Diacetyloxy-3-hydroxy-9-oxolongipinane (21): colorless crystals ($\mathrm{CHCl}_{3} /$ hexane); mp $154-155^{\circ} \mathrm{C}$; $[\alpha]_{589}-17^{\circ},[\alpha]_{578}-17^{\circ},[\alpha]_{546}-21^{\circ},[\alpha]_{436}-40^{\circ}$, $[\alpha]_{365}-84^{\circ}\left(\mathrm{c} 0.18, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3676,3471(\mathrm{OH})$, 1732 ($\mathrm{C}=\mathrm{O}$ acetate), 1696 ($\mathrm{C}=\mathrm{O}$ cycloheptanone), 1240 (CO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), see Table 1 and $\delta 2.04$ (3H, s, OAc), 2.02 (3H, s, OAc); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4 and $\delta 170.4,169.9$ (C=O acetates), 21.2, 21.0 (Me acetates); EIMS m/z 352 [M] ${ }^{+}$(0.3), 292 (1), 250 (6), 232 (16), 217 (8), 189 (16), 161 (14), 135 (12), 95 (18), 69 (8), 55 (7), 43 (100); HREIMS m/z 352.1876 (calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6}, 352.1886$).

Alkaline Hydrolysis of the Mixture of 18-20. A solution of the mixture of $\mathbf{1 8 - 2 0}(500 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was treated with $\mathrm{KOH}\left(500 \mathrm{mg}\right.$) dissolved in 1 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction mixture was refluxed for 1 h , diluted with ice/ $\mathrm{H}_{2} \mathrm{O}$, and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated and the residue chromatographed over silica gel. Fractions that eluted with EtOAc/hexane (2:3) gave 22 (209 mg, 60\%). Fractions eluting with EtOAc/hexane (1:4) afforded $\mathbf{2 3}^{16}$ ($35 \mathrm{mg}, \mathbf{9 \%}$) and the mixture of $\mathbf{2 4}$ and $\mathbf{2 5}$ (85.6 $\mathrm{mg}, 23 \%)$. Subsequent separation of the mixture by column chromatography on silica gel using acetone/EtOAc/CH2Cl $\mathbf{C l}_{2}$ (1: 10:10) as eluent gave 24 ($35 \mathrm{mg}, 9 \%$), 25 ($20 \mathrm{mg}, 5 \%$), and recovered mixture ($35 \mathrm{mg}, 9 \%$).
(1R ,3S,4S,5S,10R ,11R)-1-H ydroxy-9-oxolongi pin-7ene (22): col orless crystals (ethanol); mp 173-174 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{589}$ $+7^{\circ},[\alpha]_{578}+7^{\circ},[\alpha]_{546}+7^{\circ},[\alpha]_{436}-7^{\circ},[\alpha]_{365}-168^{\circ}$ (c 0.15, $\mathrm{EtOH})$; UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 226$ (3.97) nm; IR $\nu_{\text {max }} 3608$, 3480 (OH), 1650 ($\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ cycloheptenone), 1260 ($\mathrm{C}-\mathrm{O}$) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), see Table 2 and $\delta 1.84(1 \mathrm{H}$, br s, OH); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4; EIMS $\mathrm{m} / \mathrm{z} 234[\mathrm{M}]^{+}$(3), 219 (18), 201 (24), 191 (24), 173 (96), 163 (48), 149 (60), 135 (100), 119 (85), 109 (85), 96 (56), 81 (71), 69 (31), 55 (31), 43 (49); HREIMS m/z 235.1696 (calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ $+\mathrm{H}^{+}, 235.1698$).
(1R,3S,4S,5S,7R,10R,11R)-1,7-Dihydroxy-9-oxolongipinane (24): crystalline solid; mp $193-195^{\circ} \mathrm{C}$; $[\alpha]_{589}+12^{\circ}$, $[\alpha]_{578}$ $+13^{\circ},[\alpha]_{546}+15^{\circ},[\alpha]_{436}+22^{\circ},[\alpha]_{365}+32^{\circ}(\mathrm{c} 0.12, \mathrm{EtOH})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3608,3416(\mathrm{OH}), 1684(\mathrm{C}=\mathrm{O}$ cycloheptanone) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 2 and $\delta 1.84(1 \mathrm{H}$, br s, OH), $1.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}\right)$, see Table 4; EIMS m/z 252 [M]+ (3), 234 (5), 219 (13), 205 (7), 191 (25), 175 (24), 163 (34), 147 (28), 137 (50), 121 (60), 109 (61), 95 (100), 81 (34), 69 (43), 55 (20), 43 (48); HREIMS m/z 252.1729 (calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}, 252.1725$).
(1R,3S,4S,5S,7S,10R,11R)-1,7-Dihydroxy-9-oxolongipinane (25): col orless crystals ($\mathrm{CHCl}_{3} /$ hexane); mp $188-190^{\circ} \mathrm{C}$; $[\alpha]_{589}-12^{\circ},[\alpha]_{578}-12^{\circ},[\alpha]_{546}-14^{\circ},[\alpha]_{436}-26^{\circ},[\alpha]_{365}-43^{\circ}$ (c $0.01, \mathrm{EtOH})$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3602,3435(\mathrm{OH}), 1684(\mathrm{C}=\mathrm{O}$ cycloheptanone) cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 2 and $\delta 2.11(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}\right)$, see Table 4; EIMS m/z 252 [M]+ (3), 234 (4), 219 (13), 205 (7), 191 (25), 175 (23), 163 (32), 147 (27), 137 (48), 121 (58), 109 (61), 95 (100), 81 (36), 69 (44), 55 (21), 43 (52); HREIMS m/z 252.1729 (calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}, 252.1725$).

Reaction of the Mixture of 18-20 with Alumina. A solution of the mixture of $\mathbf{1 8 - 2 0}(\mathbf{4 7 5} \mathrm{mg}, 1.4 \mathrm{mmol})$ in THF (2 mL) was treated with 2.38 g of activated neutral alumina (Brockmann I, 150 mesh, $58 \AA$, d = 3.970 from Aldrich Co.). After evaporation of the solvent with a steady stream of nitrogen, $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was added, and the impregnated alumina was heated at $90{ }^{\circ} \mathrm{C}$ for 72 h ; addition of $\mathrm{H}_{2} \mathrm{O}(1.5$ mL) every 24 h was necessary. The reaction mixture was brought to room temperature, THF was added, and the alumina was filtered and washed repeatedly with EtOAc. The resulting solution was evaporated, and the residue was chromatographed over silica gel eluting with EtOAc/hexane (4:1) to give a mixture of 6 and $\mathbf{2 8}(258 \mathrm{mg}, 66 \%)$, recovered $\mathbf{1 8}^{16}$ ($30 \mathrm{mg}, 6 \%$), and 22 ($45 \mathrm{mg}, 14 \%$). Subsequent separation of the mixture by repeated column chromatography on silica gel using EtOAc/CH ${ }_{2} \mathrm{Cl}_{2}$ (1:24) as eluent gave 28 ($250 \mathrm{mg}, 64 \%$) and 6 ($2 \mathrm{mg}, 0.5 \%$).
(1R,3S,4S,5S,10R,11R)-1-Acetyloxy-7-oxolongipin-8ene (6): colorless oil; $[\alpha]_{589}+72^{\circ},[\alpha]_{578}+76^{\circ},[\alpha]_{546}+90^{\circ},[\alpha]_{436}$
$+206^{\circ},[\alpha]_{365}+555^{\circ}\left(\mathrm{c} 0.18, \mathrm{CHCl}_{3}\right) ;$ UV $(\mathrm{EtOH}) \lambda_{\max }(\log \epsilon) 244$ (3.32) nm; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 1724$ ($\mathrm{C}=\mathrm{O}$ acetate), $1652(\mathrm{C}=\mathrm{C}-$ $\mathrm{C}=\mathrm{O}$ cycloheptenone), $1252(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR (CDCl 3,300 $\mathrm{MHz})$, see Table 1 and $\delta 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 75.4 MHz), see Table 4 and $\delta 170.5$ ($\mathrm{C}=\mathrm{O}$ acetate), 21.3 (Me acetate); ElMS m/z 276 [M] ${ }^{+}$(0.2), 234 (3), 216 (3), 201 (10), 188 (11), 173 (34), 145 (100), 131 (24), 119 (40), 96 (11), 81 (6), 67 (6), 55 (4), 43 (28); HREIMS m/z 276.1722 (calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}, 276.1725$).
(1R,3S,4S,5S,10R ,11R)-1-Acetyloxy-9-oxolongipin-7ene (28): colorless crystals (acetone/hexane); mp 94-95 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{589}-9^{\circ},[\alpha]_{578}-10^{\circ},[\alpha]_{546}-13^{\circ},[\alpha]_{436}-49^{\circ},[\alpha]_{365}-361^{\circ}$ (c $\left.0.15, \mathrm{CHCl}_{3}\right) ;$ UV $(\mathrm{EtOH}) \lambda_{\max }(\log \epsilon) 226(4.04) \mathrm{nm} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $v_{\max } 1724$ ($\mathrm{C}=\mathrm{O}$ acetate), 1650 ($\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ cycloheptenone), $1252(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), seeTable 2 and $\delta 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}\right)$, see Table 4 and $\delta 170.6$ ($\mathrm{C}=\mathrm{O}$ acetate), 21.4 (Me-acetate); EIMS m/z 276 [M] ${ }^{+}$(1), 261 (3), 234 (16), 216 (29), 201 (46), 188 (22), 173 (100), 145 (82), 109 (36), 96 (33), 81 (23), 69 (8), 55 (6), 43 (28); HREIMS m/z 276.1722 (calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}, 276.1725$).

Acetylation of $\mathbf{1 0}$ with AcCI. A solution of $\mathbf{1 0}^{\mathbf{1 6}}$ (500 mg, $2.0 \mathrm{mmol})$ in acetone $(20 \mathrm{~mL})$ cooled in an ice bath was treated with $\mathrm{AcCl}(0.3 \mathrm{~mL}, 4.2 \mathrm{mmol})$. The reaction mixture was stored at room temperature for 24 h and then quenched and neutralized by addition of an aqueous solution of $\mathrm{KOH}(6 \mathrm{~N})$. The acetone was removed under reduced pressure, and the crude reaction product was extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under a vacuum to give an oil. After purification of the crude reaction mixture by flash chromatography on silica gel, the mixture of 12-14 (104 $\mathrm{mg}, 16 \%$) was obtained from fractions that eluted with EtOAc/hexane (2:3). Fractions eluting with EtOAc/hexane (4:1) and subsequent flash chromatography with the same eluent gave 15 ($46 \mathrm{mg}, 18 \%$) and 29 (6 mg, 1\%). Starting material 10 ($59 \mathrm{mg}, 12 \%$) was recovered from fractions eluting with $\mathrm{MeOH} / E t O A c$ (1:19).
(1R,3S,4S,5S,7R ,9R ,10S,11R)-7-Acetyloxy-9,11-dihydroxyuruapane (29): col orless oil; $[\alpha]_{589}+6^{\circ},[\alpha]_{578}+8^{\circ},[\alpha]_{546}$ $+8^{\circ},[\alpha]_{436}+8^{\circ},[\alpha]_{365}+8^{\circ}\left(\mathrm{c} \mathrm{0.05}, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 3670$, $3436(\mathrm{OH}), 1716\left(\mathrm{C}=\mathrm{O}\right.$ acetate), $1252(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 2 and $\delta 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}\right)$, see Table 4 and $\delta 171.2(\mathrm{C}=\mathrm{O}$ acetate), 21.4 (Me-acetate); EIMS m/z $254\left[\mathrm{M}-\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}\right)\right]^{+}$ (5), 236 (5), 221 (90), 203 (56), 194 (21), 177 (36), 161 (39), 147 (22), 137 (100), 121 (42), 109 (38), 96 (42), 81 (28), 69 (18), 55 (10), 43 (34); HRDCI MS (NH_{3}) m/z 314.2333 (calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}$ $+\mathrm{NH}_{4}{ }^{+}, 314.2331$).

Acetylation of 10 with AcCI and 4-(Dimethylamino)pyridine in Acetone and Subsequent Oxidation and Reaction with Alumina. A solution of $\mathbf{1 0}^{\mathbf{1 6}}(500 \mathrm{mg}, 2.0$ mmol) and 4 -(dimethylamino)pyridine ($960 \mathrm{mg}, 7.9 \mathrm{mmol}$) in acetone (15 mL) cooled in an ice bath was slowly treated with a solution of $\mathrm{AcCl}(0.3 \mathrm{~mL}, 4.2 \mathrm{mmol})$ in acetone (5 mL). The reaction mixture was stored at room temperature for 24 h , and the formed precipitate was filtered off and washed with EtOAc. After the acetone was evaporated from the resulting solution, the residue was extracted with EtOAc and worked up as described for the acetylation of $\mathbf{1 0}$ with $\mathrm{Ac}_{2} \mathrm{O}$, affording $\mathbf{1 1}^{16}$ ($182 \mathrm{mg}, 24 \%$), a mixture of $\mathbf{1 2 - 1 4}$ ($218 \mathrm{mg}, 33 \%$), 15 (115 $\mathrm{mg}, 20 \%$), $\mathbf{1 6}$ ($42 \mathrm{mg}, 7 \%$), $\mathbf{1 7}$ ($11 \mathrm{mg}, 2 \%$), and the unreacted $\mathbf{1 0}(59 \mathrm{mg}, 12 \%)$. The mixture of $\mathbf{1 2 - 1 4 (2 0 0 ~ m g , ~} 0.6 \mathrm{mmol})$ in $\mathrm{AcOH}(2 \mathrm{~mL})$ was treated with $\mathrm{CrO}_{3}(200 \mathrm{mg})$ as described above to yield 150 mg (75\%) of a mixture of $\mathbf{1 8 - 2 0}$ and 35 mg (17\%) of 21. As described above, the mixture of 18-20 (150 $\mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (1 mL) treated with neutral alumina (750 mg) and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL}$, added every 24 h) yielded 7 mg (6\%) of $\mathbf{6}, 50 \mathrm{mg}$ (41\%) of $\mathbf{2 8}, 22 \mathrm{mg}$ (15\%) of the unreacted 18, ${ }^{16}$ and 21 mg (20\%) of a mixture of 22 and 27.

Esterification of 10 with p-Nitrobenzoyl Chloride. A solution of $\mathbf{1 0}^{16}(1 \mathrm{~g}, 4.0 \mathrm{mmol})$ and p-nitrobenzoyl chloride (1 $\mathrm{g}, 5.4 \mathrm{mmol}$) in anhydrous pyridine (25 mL) was stored at 4 ${ }^{\circ} \mathrm{C}$ for 24 h under an argon atmosphere. The reaction mixture was poured over ice/ $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was washed with dilute $\mathrm{HCl}(10 \%), \mathrm{H}_{2} \mathrm{O}$, aqueous NaHCO_{3}, and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and
evaporated under a vacuum. The residue was dissolved in CHCl_{3} and purified by repeated flash chromatography on silica gel. Fractions that eluted with EtOAc/hexane ($2: 3$) gave 30 ($570 \mathrm{mg}, 21 \%$), a mixture of $31-32$ ($50 \mathrm{mg}, 2 \%$), and 33 (302.8 $\mathrm{mg}, 14 \%)$. Fractions eluting with EtOAc/hexane (3:2) afforded 34 ($191 \mathrm{mg}, 12 \%$), 35 ($165 \mathrm{mg}, 10 \%$), and 36 ($70 \mathrm{mg}, 4 \%$). From fractions that eluted with $\mathrm{MeOH} / \mathrm{EtOAc}(1: 19)$, unreacted starting material $\mathbf{1 0}$ ($96 \mathrm{mg}, 10 \%$) was recovered. Subsequent separation of the mixture by flash chromatography on silica gel using EtOAc/CH2Cl 2 (1:24) was carried out giving 31 (20 $\mathrm{mg}, 1 \%)$ and 32 (29 mg, 1\%).
(1R ,3S,4S,5S,7R ,9R ,10R ,11R)-1,7,9-Tri-p-nitrobenzoyloxylongipinane (30): yellow crystals (acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\mathrm{mp} 150-152{ }^{\circ} \mathrm{C} ;[\alpha]_{589}-62^{\circ},[\alpha]_{578}-65^{\circ},[\alpha]_{546}-76^{\circ},[\alpha]_{436}$ $-136^{\circ},[\alpha]_{365}$ Iow energy (c 0.16, CHCl_{3}); UV ($\mathrm{CH}_{3} \mathrm{CN}$) $\lambda_{\text {max }}(\mathrm{log}$ є) 261 (4.33) nm; IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 1724$ ($\mathrm{C}=$ O benzoates), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), 1530, $1280\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz), see Table 2 and $\delta 8.24$ and 8.13 ($12 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-4^{\prime}$, $4^{\prime \prime}, 4^{\prime \prime \prime}, 6^{\prime}, 6^{\prime \prime}, 6^{\prime \prime \prime}$ and $\mathrm{H}-3^{\prime}, 3^{\prime \prime}, 3^{\prime \prime \prime}, 7^{\prime}, 7^{\prime \prime}, 7^{\prime \prime \prime}$ p-nitrobenzoates); ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 75.4 \mathrm{MHz}$), see Table 4 and δ 164.4, 164.0, 163.8 ($\mathrm{C}=0$ benzoates), 150.5, 150.6, 150.6 ($\mathrm{C}-5^{\prime}, 5^{\prime \prime}, 5^{\prime \prime \prime}$), 135.8, 135.7, 135.6 (C-2', 2", $\left.2^{\prime \prime}\right), 130.6,130.5,130.4$ (C-3', $3^{\prime \prime}, 3^{\prime \prime \prime}$ and C-7', $\left.7^{\prime \prime}, 7^{\prime \prime \prime}\right)$, 123.6, 123.6, 123.5 (C-4', $4^{\prime \prime}, 4^{\prime \prime \prime}$ and C-6', $\left.6^{\prime \prime}, 6^{\prime \prime \prime}\right)$; EIMS m/z 671 [M - (NO)] ${ }^{+}(1), 641$ (0.1), 367 (30), 324 (4), 260 (3), 217 (29), 200 (66), 150 (100), 120 (48), 95 (9), 65 (5), 44 (6); HRFABMS $\mathrm{m} / \mathrm{z} 724.2155$ (cal cd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{O}_{12} \mathrm{~N}_{3}+\mathrm{Na}^{+}, 724.2118$).
(1R ,3S, 4S,5S,7R ,9R ,10R,11R)-1-Hydroxy-7,9-di-p-nitrobenzoyloxylongipinane (31): white solid: mp 222-223 ${ }^{\circ} \mathrm{C} ;[\alpha]_{589}+68^{\circ},[\alpha]_{578}+71^{\circ},[\alpha]_{546}+85^{\circ},[\alpha]_{436}+188^{\circ},[\alpha]_{365}$ Iow energy ($\mathrm{c} 0.16, \mathrm{CHCl}_{3}$); UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max }(\log \epsilon) 261$ (4.44) nm; IR (CHCl_{3}) $\nu_{\text {max }} 3608,3471(\mathrm{OH}), 1720(\mathrm{C}=\mathrm{O}$ benzoates), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), $1530,1276\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz), see Table 2 and $\delta 8.25$ and 8.11 ($4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-4^{\prime}, 6^{\prime}$ and $\mathrm{H}-3^{\prime}, 7^{\prime} \mathrm{p}$-nitrobenzoate), 8.33 ($4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-3^{\prime \prime}, 7^{\prime \prime}$ and $\mathrm{H}-4^{\prime \prime}, 6^{\prime \prime} \mathrm{p}$-nitrobenzoate), 1.87 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, ~$ 75.4 MHz), see Table 4 and δ 164.7, 163.9 ($\mathrm{C}=\mathrm{O}$ benzoates), $150.5,150.5$ ($\left(-5^{\prime}, 5^{\prime \prime}\right), 136.1,135.7$ ($\left.\mathrm{C}-2^{\prime}, 2^{\prime \prime}\right), 130.8,130.5$ (C-3', $3^{\prime \prime}$ and $\mathrm{C}-7^{\prime}, 7^{\prime \prime}$), 123.6, 123.5 (C-4', $4^{\prime \prime}$ and C- $6^{\prime}, 6^{\prime \prime}$); EIMS $\mathrm{m} / \mathrm{z} 522$ [M - (NO)] ${ }^{+}$(2), 385 (6), 367 (5), 341 (6), 324 (6), 235 (5), 218 (93), 203 (18), 175 (47), 159 (16), 150 (100), 120 (31), 95 (14), 81 (5), 65 (1); HRDCIMS (NH_{3}) m/z 570.2449 (calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}{ }_{9} \mathrm{~N}_{2}+\mathrm{NH}_{4}{ }^{+}, 570.2452$).
(1R ,3S,4S,5S,7R,9R ,10R ,11R)-7-H ydroxy-1,9-di-p-nitrobenzoyloxylongi pinane (32): yellow solid; mp 97-99 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{589}-117^{\circ},[\alpha]_{578}-123^{\circ},[\alpha]_{546}-142^{\circ},[\alpha]_{436}-281^{\circ},[\alpha]_{365}$ low energy (c 0.19, CHCl_{3}); UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 210$ (sh) (4.00), 257 (4.35) nm; IR (CHCl_{3}) $\nu_{\max } 3620,3453(\mathrm{OH}), 1720(\mathrm{C}=0$ benzoates), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), 1530, $1282\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), see Table 2 and $\delta 8.25-8.05(8 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3^{\prime}, 3^{\prime \prime}, 7^{\prime}, 7^{\prime \prime}$ and $\mathrm{H}-4^{\prime}, 4^{\prime \prime}, 6^{\prime}, 6^{\prime \prime}$ p-nitrobenzoate), 1.58 (1H, br s, OH); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4 and $\delta 164.0$, 164.0 ($\mathrm{C}=$ O benzoates), 150.5, 150.5 ($\mathrm{C}-5^{\prime}, 5^{\prime \prime}$), 135.8, 135.7 (C$2^{\prime}, 2^{\prime \prime}$), 130.4, 130.3 ($\mathrm{C}-3^{\prime}, 3^{\prime \prime}$ and $\left.\mathrm{C}-7^{\prime}, 7^{\prime \prime}\right), 123.6,123.5$ (C-4', $4^{\prime \prime}$ and C-6', $6^{\prime \prime}$); EIMS m/z 552 [M] ${ }^{+}$(0.2), 522 (2), 385 (15), 367 (6), 341 (8), 260 (9), 218 (85), 175 (66), 150 (100), 96 (53), 69 (10), 43 (11); HREIMS m/z 552.2104 (calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{9} \mathrm{~N}_{2}+$ $\mathrm{NH}_{4}{ }^{+}, 552.2108$).
(1R ,3S,4S,5S,7R ,9R ,10R ,11R)-9-Hydroxy-1,7-di-p-nitrobenzoyloxylongipinane (33): yellow crystals (acetone/ hexane); mp $223-225^{\circ} \mathrm{C} ;[\alpha]_{589}-82^{\circ},[\alpha]_{578}-86^{\circ},[\alpha]_{546}-99^{\circ}$, $[\alpha]_{436}-190^{\circ},[\alpha]_{365}$ low energy (c 0.16, CHCl_{3}); UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ $\lambda_{\text {max }}(\log \epsilon) 262(4.26) ;$ IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 3602,3480(\mathrm{OH}), 1720$ ($\mathrm{C}=\mathrm{O}$ benzoates), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), 1530, $1272\left(\mathrm{NO}_{2}\right)$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 3 and $\delta 8.25-$ 8.10 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}, 3^{\prime \prime}, 7^{\prime}, 7^{\prime \prime} \mathrm{p}$-nitrobenzoate), $8.35-8.25(4 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4^{\prime}, 4^{\prime \prime}, 6^{\prime}, 6^{\prime \prime}$ p-nitrobenzoate), 2.15 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}\right.$), see Table 4 and $\delta 164.2$, 164.1 ($\mathrm{C}=0$ benzoates), $150.5,150.4$ (C-5', $\left.5^{\prime \prime}\right)$, 136.0, 135.9 (C- $\left.2^{\prime}, 2^{\prime \prime}\right), 130.6$, 130.5 ($\mathrm{C}-3^{\prime}, 3^{\prime \prime}$ and $\left.\mathrm{C}-7^{\prime}, 7^{\prime \prime}\right), 123.5,123.4$ (C-4', $4^{\prime \prime}$ and $\mathrm{C}-6^{\prime}, 6^{\prime \prime}$); EIMS m/z 522 [M - (NO)] ${ }^{+}$(5), 446 (0.7), 385 (4), 343 (9), 296 (4), 235 (5), 218 (47), 203 (35), 189 (24), 176 (67), 161 (43), 150 (98), 137 (35), 121 (100), 107 (37), 96 (31), 65 (6); HRDCIMS $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 570.2445$ (cal cd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{9} \mathrm{~N}_{2}+\mathrm{NH}_{4}{ }^{+}, 570.2452$).
(1R,3S,4S,5S,7R,9R,10R,11R)-7,9-Dihydroxy-1-p-nitrobenzoyloxylongipinane (34): yellow oil; $[\alpha]_{589}-35^{\circ},[\alpha]_{578}$
$-37^{\circ},[\alpha]_{546}-43^{\circ},[\alpha]_{436}-83^{\circ},[\alpha]_{365}$ low energy ($\mathbf{c} 0.16, \mathrm{CHCl}_{3}$); UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 212$ (3.63), 259 (4.10) nm; IR $\left(\mathrm{CHCl}_{3}\right)$ $\nu_{\max } 3616,3468(\mathrm{OH}), 1716$ ($\mathrm{C}=\mathrm{O}$ benzoate), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), 1530, $1280\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 3 and $\delta 8.26$ and 8.17 ($4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-4^{\prime}, 6^{\prime}$ and $\mathrm{H}-3^{\prime}, 7^{\prime}$ p-nitrobenzoate), $2.48(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4$ MHz), see Table 4 and $\delta 164.1$ ($\mathrm{C}=0$ benzoate), 150.4 (C-5'), 136.1 (C-2'), 130.6 (C-3' and C-7'), 123.4 (C-4' and C-6'); EIMS $\mathrm{m} / \mathrm{z} 385\left[\mathrm{M}-\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}(0.2), 373$ (0.6), 260 (9), 236 (7), 218 (19), 203 (18), 175 (53), 150 (77), 121 (58), 107 (48), 95 (100), 81 (21), 69 (27), 55 (11), 43 (2); HRDCIMS (NH_{3}) m/z 421.2320 (calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~N}+\mathrm{NH}_{4}{ }^{+}, 421.2339$).
(1R ,3S,4S,5S,7R ,9R ,10R,11R)-1,9-Dihydroxy-7-p-nitrobenzoyloxylongipinane (35): amorphous white solid $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $) ; \mathrm{mp} 192{ }^{\circ} \mathrm{C} ;[\alpha]_{589}+10^{\circ},[\alpha]_{578}+10^{\circ},[\alpha]_{546}$ $+13^{\circ},[\alpha]_{436}+29^{\circ},[\alpha]_{365}$ low energy ($0.16, \mathrm{CHCl}_{3}$); UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 210(\mathrm{sh})(3.83), 259(4.06) \mathrm{nm} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v_{\max } 3604$, 3434 (OH), 1718 ($\mathrm{C}=\mathrm{O}$ benzoate), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), 1530, $1280\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, seeTable 3 and $\delta 8.28$ and $8.19\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-4^{\prime}, 6^{\prime}\right.$ and $\mathrm{H}^{\prime} 3^{\prime}, 7^{\prime}$ p-nitrobenzoate), $2.89(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4 and $\delta 164.3$ ($\mathrm{C}=\mathrm{O}$ benzoate), 150.5 ($\mathrm{C}-5^{\prime}$), 136.1 (C-2'), 130.6 (C-3' and C-7'), 123.5 (C-4' and C-6'); EIMS m/z $385\left[\mathrm{M}-\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}(2), 373$ (2), 284 (4), 257 (6), 236 (17), 218 (24), 203 (39), 175 (48), 150 (56), 137 (100), 120 (67), 109 (71), 95 (57), 81 (34), 69 (55), 57 (27), 43 (49); HRDCIMS (NH_{3}) m/z 421.2346 (calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~N}+\mathrm{NH}_{4}{ }^{+}, 421.2339$).
(1R,3S,4S,5S,7R,9R,10R,11R)-1,7-Dihydroxy-9-p-nitrobenzoyloxylongipinane (36): white crystals (EtOAd hexane); mp $232-233^{\circ} \mathrm{C} ;[\alpha]_{589}-7^{\circ},[\alpha]_{578}-7^{\circ},[\alpha]_{546}-8^{\circ},[\alpha]_{436}$ $-12^{\circ},[\alpha]_{365}$ low energy (c $\left.0.16, \mathrm{CHCl}_{3}\right)$; UV (EtOH) $\lambda_{\text {max }}(\log \epsilon)$ 212 (3.93), 259 (4.24) nm; IR (CHCl_{3}) $v_{\text {max }} 3612,3462(\mathrm{OH})$, 1718 (C=O benzoate), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), 1530, $1276\left(\mathrm{NO}_{2}\right)$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), see Table 3 and $\delta 8.28$ and 8.20 ($4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-4^{\prime}, 6^{\prime}$ and $\mathrm{H}-3^{\prime}, 7^{\prime} \mathrm{p}$-nitrobenzoate), 1.82 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $1.54-1.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 75.4 MHz), see Table 4 and $\delta 164.3$ ($\mathrm{C}=$ O benzoate), 150.5 (C-5'), 136.0 (C-2'), 130.6 ($\mathrm{C}-3^{\prime}$ and $\mathrm{C}-7^{\prime}$), 123.5 ($\mathrm{C}-4^{\prime}$ and $\mathrm{C}-6^{\prime}$); EIMS m/z 385 [M - ($\left.\left.\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$(2), 236 (17), 218 (35), 203 (26), 193 (38), 175 (64), 159 (29), 150 (89), 137 (52), 121 (53), 107 (56), 96 (100), 81 (33), 69 (32), 55 (15), 43 (34); HRDCIMS $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 421.2350$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~N}+\mathrm{NH}_{4}{ }^{+}, 421.2339$).
(1R ,3S,4S,5S,7R,9R ,10R ,11R)-1,9-Diacetyloxy-7-p-nitrobenzoyloxylongipinane (37). A solution of $35(600 \mathrm{mg}$, 1.5 mmol) in $\mathrm{AcCl}(3.5 \mathrm{~g})$ was refluxed for 10 min . The AcCl was removed by distillation, and the residue was extracted with EtOAc. The organic layer was washed with a saturated aqueous solution of NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was chromatographed on silica gel using EtOAc/hexane (1:4) as eluent to give 37 ($807 \mathrm{mg}, 95 \%$) as a pale yellow oil: $[\alpha]_{589}$ $-22^{\circ},[\alpha]_{578}-22^{\circ},[\alpha]_{546}-25^{\circ},[\alpha]_{436}-38^{\circ},[\alpha]_{365}$ low energy (c $\left.0.15, \mathrm{CHCl}_{3}\right) ;$ UV $(\mathrm{EtOH}) \lambda_{\text {max }}(\log \epsilon) 258(4.17) \mathrm{nm}$; IR $\left(\mathrm{CHCl}_{3}\right)$ $v_{\max } 1732$ ($\mathrm{C}=\mathrm{O}$ acetate), 1718 ($\mathrm{C}=\mathrm{O}$ benzoate), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), 1530, $1282\left(\mathrm{NO}_{2}\right), 1258(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$), see Table 3 and $\delta 8.28$ and 8.16 (4 H , $\mathrm{AA}^{\prime} \mathrm{BB}{ }^{\prime}, \mathrm{H}-4^{\prime}, 6^{\prime}$ and $\mathrm{H}-3^{\prime}, 7^{\prime} \mathrm{p}$-nitrobenzoate), 2.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 2.06 (3H, s, OAc); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4 and δ 171.2, 170.6 ($\mathrm{C}=\mathrm{O}$ acetates), 163.9 ($\mathrm{C}=\mathrm{O}$ benzoate), 150.5 (C-5'), 136.0 (C-2'), 130.5 (C-3' and C-7'), 123.5 (C-4' and C-6'), 21.4, 21.2 (Me-acetates); EIMS m/z 457 [M - (NO)] ${ }^{+}$(11), 445 (14), 385 (6), 367 (7), 278 (7), 268 (14), 218 (55), 200 (46), 120 (100), 95 (16), 43 (14); HRDCIMS $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 505.2569$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{8} \mathrm{~N}+\mathrm{NH}_{4}{ }^{+}, 505.2550$).

Alkaline Hydrolysis of 37. A solution of 37 ($600 \mathrm{mg}, 1.2$ $\mathrm{mmol})$ in $\mathrm{MeOH}(38 \mathrm{~mL})$ was treated with a 1.6 N solution of $\mathrm{KOH}(7.5 \mathrm{~mL})$. The reaction mixture was stored at room temperature for 7 min and then neutralized by addition of dilute $\mathrm{HCl}(20 \%)$. The MeOH was evaporated, and the residue was extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated under vacuum, and the residue was flash chromatographed on silica gel. Fractions that eluted with EtOAc/hexane (2:3) gave unreacted 37 ($30 \mathrm{mg}, 5 \%$), 39 (7.5 $\mathrm{mg}, 1 \%)$, a mixture of 13 and 38 (295 mg), and 17 (84.5 mg ,
23%). F ractions eluting with EtOAc afforded $\mathbf{1 5}$ ($12.5 \mathrm{mg}, 3 \%$), and fractions eluting with $\mathrm{MeOH} / \mathrm{EtOAc}(1: 19)$ gave $\mathbf{1 0}$ (7.3 $\mathrm{mg}, 2 \%$). Subsequent separation of the mixture by flash chromatography on silica gel using acetone/ $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1: $6: 14)$ gave 13 ($263 \mathrm{mg}, 63 \%$) and 38 ($13 \mathrm{mg}, 2 \%$).
(1R,3S,4S,5S,7R,9R,10R,11R)-1,9-Diacetyloxy-7-hydroxylongipinane (13): colorless oil; $[\alpha]_{589}+8^{\circ},[\alpha]_{578}+9^{\circ}$, $[\alpha]_{546}+10^{\circ},[\alpha]_{436}+19^{\circ},[\alpha]_{365}+35^{\circ}\left(\mathrm{c} 0.35, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ $v_{\text {max }} 3612,3480(\mathrm{OH}), 1728$ ($\mathrm{C}=\mathrm{O}$ acetate), $1254(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 1 and $\delta 2.09(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc}), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.49(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 75.4 MHz), see Table 4 and $\delta 170.8,170.6$ ($\mathrm{C}=\mathrm{O}$ acetates), 21.4, 21.3 (Me-acetates); EIMS m/z 296 [M - ($\left.\left.\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}\right)\right]^{+}$(2), 278 (3), 263 (1), 236 (13), 218 (45), 203 (24), 185 (19), 175 (75), 159 (48), 147 (34), 133 (36), 123 (42), 107 (40), 96 (100), 81 (21), 69 (18), 55 (9), 43 (47); HRDCIMS (NH_{3}) m/z 356.2437 (calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5}+\mathrm{NH}_{4}{ }^{+}, 356.2437$).
(1R,3S,4S,5S,7R,9R,10R,11R)-9-Acetyloxy-1-hydroxy-7-p-nitrobenzoyloxylongipin-ane (38): pale yellow oil; $[\alpha]_{589}$ $-13^{\circ},[\alpha]_{578}-13^{\circ},[\alpha]_{546}-14^{\circ},[\alpha]_{436}-22^{\circ},[\alpha]_{365}$ low energy (c $\left.0.13, \mathrm{CHCl}_{3}\right) ;$ UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 212$ (sh) (3.82), 259 (4.04) $\mathrm{nm} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v_{\max } 3606,3504(\mathrm{OH}), 1732(\mathrm{C}=\mathrm{O}$ acetate and benzoate), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), 1530, $1282\left(\mathrm{NO}_{2}\right), 1254$ (CO) cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$), see Table 3 and $\delta 8.29$ and 8.16 ($4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-4^{\prime}, 6^{\prime}$ and $\mathrm{H}-3^{\prime}, 7^{\prime}$ p-nitrobenzoate), 2.22 (3H, s, OAc), $1.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4 and $\delta 171.4$ ($\mathrm{C}=\mathrm{O}$ acetate), 164.0 ($\mathrm{C}=\mathrm{O}$ benzoate), 150.5 (C-5'), 136.0 (C-2'), 130.6 (C-3' and C-7'), 123.6 ($\mathrm{C}-4^{\prime}$ and C-6'), 21.3 (Me-acetate); EIMS m/z $446[\mathrm{M}+1]^{+}(0.2), 415$ (2), 403 (7), 236 (35), 218 (100), 175 (77), 150 (57), 120 (61), 95 (51), 81 (33), 69 (25), 43 (46); HRDCIMS (NH_{3}) m/z 463.2458 (calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{~N}+\mathrm{NH}_{4}{ }^{+}, 463.2444$).
(1R,3S,4S,5S,7R,9R,10R,11R)-1-Acetyloxy-9-hydroxy-7-p-nitrobenzoyloxylongipinane (39): pale yellow oil; [$\alpha]_{589}$ $-10^{\circ},[\alpha]_{578}-10^{\circ},[\alpha]_{546}-12^{\circ},[\alpha]_{436}-19^{\circ},[\alpha]_{365}$ low energy (c $\left.0.04, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{EtOH}) \lambda_{\max }(\log \epsilon) 212$ (sh) (3.80), 259 (3.95) $\mathrm{nm} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3250(\mathrm{OH}), 1720(\mathrm{C}=\mathrm{O}$ acetate and benzoate), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), 1530, $1280\left(\mathrm{NO}_{2}\right), 1258$ $(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 3 and δ 8.30 and 8.19 ($4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-4^{\prime}, 6^{\prime}$ and $\mathrm{H}^{-3} 3^{\prime}, 7^{\prime}$ p-nitrobenzoate), 2.05 (3H, s, OAc), 1.60 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4$ MHz), see Table 4 and $\delta 170.8$ ($\mathrm{C}=0$ acetate), 164.2 ($\mathrm{C}=0$ benzoate), 150.5 (C-5'), 136.1 (C-2'), 130.6 ($\mathrm{C}-3^{\prime}$ and $\mathrm{C}-7^{\prime}$), 123.6 (C-4' and C-6'), 21.5 (Me-acetate); EIMS m/z $445[\mathrm{M}]^{+}(0.1)$, 415 (1), 385 (1), 343 (3), 236 (7), 218 (51), 203 (35), 176 (65), 159 (45), 150 (46), 121 (100), 107 (51), 95 (45), 81 (20), 69 (27), 43 (33); HRDCIMS $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 463.2434$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{~N}$ $\left.+\mathrm{NH}_{4}{ }^{+}, 463.2444\right)$.

Oxidation of 13. Using the procedure described above, compound $\mathbf{1 3}(100 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{AcOH}(1 \mathrm{~mL})$ was treated with $\mathrm{CrO}_{3}(100 \mathrm{mg})$ to yield 72 mg (72\%) of 19 and 13 mg (12\%) of 40 .
(1R,3S,4S,5S,9R,10R,11R)-1,9-Diacetyloxy-7-oxolongipinane (19): col orless oil; $[\alpha]_{589}+1^{\circ},[\alpha]_{578}+2^{\circ},[\alpha]_{546}+3^{\circ},[\alpha]_{436}$ $+27^{\circ},[\alpha]_{365}+121^{\circ}\left(\mathrm{c} 0.16, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 1728$ ($\mathrm{C}=\mathrm{O}$ acetate), 1720 ($\mathrm{C}=\mathrm{O}$ cycloheptanone), $1228(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 1 and $\delta 2.04$ (3H, s, $\mathrm{OAc}), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4 and $\delta 170.6,170.5$ ($\mathrm{C}=\mathrm{O}$ acetates), 21.3, 21.0 (Me-acetates); EIMS m/z 336 [M]+ (0.1), 308 (2), 294 (8), 277 (5), 234 (47), 216 (29), 188 (30), 173 (66), 159 (38), 145 (69), 123 (64), 96 (100), 83 (23), 69 (17), 55 (8), 43 (83); HRDCIMS (NH_{3}) m/z 354.2273 (calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}+\mathrm{NH}_{4}{ }^{+}, 354.2280$).
(1R,3R,4S,5S,9R,10R,11R)-1,9-Diacetyloxy-3-hydroxy-7-oxolongipinane (40): white solid; $\mathrm{mp} 143-145^{\circ} \mathrm{C}$; $[\alpha]_{589}$ $+12^{\circ},[\alpha]_{578}+16^{\circ},[\alpha]_{546}+16^{\circ},[\alpha]_{436}+36^{\circ},[\alpha]_{365}+104^{\circ}$ (c 0.03 , $\left.\mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 3674(\mathrm{OH}), 1732(\mathrm{C}=\mathrm{O}$ acetate), 1696 ($\mathrm{C}=0$ cydoheptanone), 1244 ($\mathrm{C}-\mathrm{O}$) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ MHz), see Table 3 and $\delta 2.08$ (3H, s, OAc), 2.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 1.75 (1H, br s, OH); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4 and $\delta 170.6,170.4$ ($\mathrm{C}=\mathrm{O}$ acetates), 21.3, 21.1 (Me-acetates); EIMS m/z 352 [M] (0.2), 334 (0.3), 310 (2), 292 (3), 274 (3), 250 (8), 232 (36), 214 (28), 189 (55), 171 (59), 161 (55), 147
(67), 133 (52), 123 (71), 109 (41), 95 (44), 83 (29), 69 (14), 55 (9), 43 (100); HREIMS m/z 352.1888 (calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6}$, 352.1886)

Reaction of 19 with Alumina. According to the procedure for the reaction of $\mathbf{1 8 - 2 0}$ with alumina, $185 \mathrm{mg}(0.6 \mathrm{mmol})$ of 19 adsorbed on neutral alumina (925 mg) with $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL}$, added each 24 h) yielded 132 mg (87\%) of 6 and 6 mg (5\%) of 27.
(1R,3S,4S,5S,10R,11R)-1-H ydroxy-7-oxolongipin-8ene (27): white solid; mp $100-102{ }^{\circ} \mathrm{C}$; $[\alpha]_{589}-2^{\circ}$, $[\alpha]_{578}-2^{\circ}$, $[\alpha]_{546}-2^{\circ},[\alpha]_{436}-13^{\circ},[\alpha]_{365}-83^{\circ}\left(c 0.10, \mathrm{CHCl}_{3}\right)$; UV (EtOH) $\lambda_{\text {max }}(\log \epsilon) 250(3.82) \mathrm{nm} ;$ IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3608,3462(\mathrm{OH})$, 1650 ($\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ cycloheptenone), 1258 ($\mathrm{C}-\mathrm{O}$) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 2 and $\delta 1.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), seeTable 4; EIMS m/z 234 [M] ${ }^{+}$(0.3), 219 (3), 191 (4), 173 (14), 163 (13), 147 (17), 135 (31), 119 (100), 107 (21), 93 (40), 81 (11), 79 (11), 67 (13), 57 (12), 55 (12), 43 (1); HREIMS m/z 235.1698 (cal cd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}+\mathrm{H}^{+}, 235.1698$).
(1R,3S,4S,5S,7R ,9R ,10R,11R)-1,7-Diacetyloxy-9-p-nitrobenzoyloxylongi pinane (41). According to the procedure described for $37,300 \mathrm{mg}(0.7 \mathrm{mmol})$ of 36 treated with AcCl $(1.5 \mathrm{~g})$ afforded $41(308.3 \mathrm{mg}, 85 \%)$ as a yellow oil: $[\alpha]_{589}+3^{\circ}$, $[\alpha]_{578}+3^{\circ},[\alpha]_{546}+4^{\circ},[\alpha]_{436}+19^{\circ},[\alpha]_{365}$ low energy (c 0.16, $\left.\mathrm{CHCl}_{3}\right)$; UV (EtOH) $\lambda_{\max }(\log \epsilon) 212$ (3.68), 259 (4.06) nm; IR (CHCl_{3}) $\nu_{\max } 1732$ (C=O acetate), 1714 ($\mathrm{C}=\mathrm{O}$ benzoate), 1608 ($\mathrm{C}=\mathrm{C}$ aromatic), 1530, $1282\left(\mathrm{NO}_{2}\right), 1256(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 3 and $\delta 8.33$ and 8.26 (4 H , $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{H}-4^{\prime}, 6^{\prime}$ and $\mathrm{H}-3^{\prime}, 7^{\prime} \mathrm{p}$-nitrobenzoate), 2.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 1.98 (3H, s, OAc); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4 and δ 170.4, 170.3 ($\mathrm{C}=\mathrm{O}$ acetates), 164.4 ($\mathrm{C}=\mathrm{O}$ benzoate), 150.3 (C-5'), 136.0 (C-2'), 130.6 (C-3' and C-7'), 123.5 (C-4' and C-6'), 21.4, 21.1 (Me-acetates); EIMS m/z 457 [M - (NO)] ${ }^{+}$(2), 367 (23), 324 (7), 278 (9), 260 (22), 218 (66), 200 (100), 185 (44), 175 (45), 150 (50), 137 (33), 120 (41), 95 (44), 81 (13), 43 (33); HRDCIMS $\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z} 505.2545$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{8}+$ $\mathrm{NH}_{4}{ }^{+}, 505.2550$).
(1R ,3S,4S,5S,7R ,9R ,10R ,11R)-1,7-Diacetyloxy-9-hydroxylongi pinane (14). According to the procedure described for the alkaline hydrolysis of 37, $240 \mathrm{mg}(0.5 \mathrm{mmol})$ of 41 in MeOH (15 mL) was treated with a 1.6 N solution of KOH (3 $\mathrm{mL})$ to give $43 \mathrm{mg}(26 \%)$ of 14 as a pale yellow oil: $[\alpha]_{589} 0^{\circ}$, $[\alpha]_{578} 0^{\circ},[\alpha]_{546} 0^{\circ},[\alpha]_{436}+3^{\circ},[\alpha]_{365}+8^{\circ}$ (c $0.15, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3600,3502(\mathrm{OH}), 1728$ ($\mathrm{C}=\mathrm{O}$ acetate), 1254 (CO) cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), see Table 1 and $\delta 2.05$ (3H, s, OAc), $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}\right.$), see Table 4 and $\delta 170.8$, 170.8 ($\mathrm{C}=\mathrm{O}$ acetates), 21.4, 21.3 (Me-acetates); EIMS m/z $339[\mathrm{M}+1]^{+}$ (0.1), 296 (0.1), 278 (2), 263 (2), 236 (12), 218 (41), 203 (41), 189 (28), 176 (82), 161 (59), 147 (46), 133 (41), 121 (100), 107 (59), 95 (55), 81 (19), 69 (27), 43 (51); HRDCIMS (NH_{3}) m/z 356.2433 (calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5}+\mathrm{NH}_{4}{ }^{+}, 356.2437$).
(1R,3S,4S,5S,7R,10R,11R)-1,7-Diacetyloxy-9-oxolongipinane (20). According to the procedure described above, 20 $\mathrm{mg}(0.06 \mathrm{mmol})$ of $\mathbf{1 4} \mathrm{in} \mathrm{AcOH}(0.2 \mathrm{~mL})$ treated with $\mathrm{CrO}_{3}(20$ mg) afforded $16 \mathrm{mg}(80 \%)$ of $\mathbf{2 0}$ as colorless crystals (MeOH): $\mathrm{mp} 156-158{ }^{\circ} \mathrm{C} ;[\alpha]_{589}-22^{\circ},[\alpha]_{578}-23^{\circ},[\alpha]_{546}-27^{\circ},[\alpha]_{436}$ $-52^{\circ},[\alpha]_{365}-109^{\circ}\left(\mathrm{c} 0.21, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 1732,1728$ ($\mathrm{C}=\mathrm{O}$ acetates), 1694 ($\mathrm{C}=\mathrm{O}$ cycloheptanone), 1252 ($\mathrm{C}-\mathrm{O}$) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$, see Table 1 and $\delta 2.05(3 \mathrm{H}, \mathrm{s}$, OAc), 2.03 (3H, s, OAc); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 4 and $\delta 170.4,169.8$ ($\mathrm{C}=\mathrm{O}$ acetates), 21.2, 20.9 (Me-acetates); EIMS m/z $336[M]^{+}(0.5), 308$ (2), 294 (3), 276 (11), 261 (4), 234 (50), 216 (81), 201 (49), 191 (39), 173 (78), 147 (57), 135 (48), 124 (85), 107 (60), 96 (100), 81 (25), 69 (28), 55 (13), 43 (93); HREIMS m/z 336.1938 (calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}, 336.1937$).

Single-Crystal X-ray Analysis. Single crystals of 21 and $\mathbf{2 5}$ were grown from $\mathrm{CHCl}_{3} /$ hexane, while these of $\mathbf{2 2}$ and $\mathbf{2 8}$ from ethanol and acetone/hexane, respectively. X-ray data of 21, 22, 25, and 28 were collected on a Bruker Smart 6000 CCD diffractometer. A total of 1321 frames were collected at a scan width of 0.3° and an exposure time of $10 \mathrm{~s} /$ frame. The frames were processed with the SAINT software package, provided by the diffractometer manufacturer, by using a narrow-frame integration algorithm, and the structure was solved and refined by using the SHELXS-97 program ${ }^{35}$ included in the

WINGX VI. 6 crystallographic software package. ${ }^{36}$ In particular, the structure of $\mathbf{2 1}$ was solved by searching for a fragment of known geometry by integrated Patterson using the computer program PATSEE ${ }^{37}$ in combination with SHELXS-97. ${ }^{35}$

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk].

Photochemical Irradiation of (1R,3S,4S,5S,10R,11R)-1-Acetyloxy-7-oxolongi pin-8-ene (6). The photoreaction was carried out in a glass tube of 23 mm i.d. cooled with $\mathrm{H}_{2} \mathrm{O}$ at room temperature using a Hanau (NK 620, 110V) low-pressure Hg arc immersion Iamp (254 nm) contained in a quartz jacket (20 mm o.d.). A solution of $6(30 \mathrm{mg}, 0.1 \mathrm{mmol}$) in spectroscopic grade cyclohexane (30 mL) was bubbled with argon before (20 min) and during the irradiation. The solution was irradiated for 15 min , and then the solvent was evaporated. After four runs, the combined residue was flash chromatographed on silica gel using EtOAc/hexane (3:17) as eluent separating eight fractions (I-VIII) on the basis of TLC analysis. The ${ }^{1} \mathrm{H}$ NMR spectrum of the main fraction IV ($30 \mathrm{mg}, 25 \%$) showed a mixture of three main rearranged compounds. This fraction was dissolved in MeOH and separated by semipreparative reversed-phase HPLC (Varian Dynamax, $\mathrm{C}_{18}, 5 \mathrm{~mm}, 10 \times 250$ mm with a precolumn $5 \mathrm{~mm}, 10 \times 50 \mathrm{~mm} ; \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (65: 35), $3 \mathrm{~mL} / \mathrm{min}$; differential refractive index detector) to give $\mathbf{7}$ ($6.1 \mathrm{mg}, 5 \%$), 8 ($1.7 \mathrm{mg}, 1 \%$), and $9(3.2 \mathrm{mg}, 3 \%)$.
(1R,3S,4S,5S,8S,11R)-1-Acetyloxy-7-oxoquirog-9-ene (7): col orless oil; $[\alpha]_{589}+576^{\circ},[\alpha]_{578}+611^{\circ},[\alpha]_{546}+717^{\circ},[\alpha]_{436}$ $+1528^{\circ},[\alpha]_{365}+3678^{\circ}\left(\mathrm{c} 0.05, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{EtOH}) \lambda_{\max }(\log \epsilon)$ 216 (3.77), 298 (2.79) nm; IR (CHCl_{3}) $\nu_{\text {max }} 1726$ ($\mathrm{C}=\mathrm{O}$ cycloheptanone and acetate), $1252(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; HPLC $\mathrm{t}_{\mathrm{R}} 30 \mathrm{~min}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), see Table 5 and $\delta 2.05$ (3H, s, $\mathrm{OAc}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 5 and $\delta 170.4$ (C=O acetate), 21.5 (Me-acetate); EIMS m/z 276 [M]+ (12), 248 (0.1), 233 (0.1), 216 (0.5), 188 (10), 173 (7), 161 (2), 145 (100), 131 (5), 119 (14), 105 (4), 93 (2), 72 (4), 55 (1), 43 (17); HREIMS $\mathrm{m} / \mathrm{z} 276.1726$ (cal cd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$, 276.1725).
(1R,3S,4R,5S,10R,11R)-1-Acetyloxy-7-oxoprenops-8ene (8): colorless oil; $[\alpha]_{589}-150^{\circ},[\alpha]_{578}-150^{\circ},[\alpha]_{546}-186^{\circ}$, $[\alpha]_{436}-429^{\circ},[\alpha]_{365}-1036^{\circ}$ (c 0.01, CHCl_{3}); UV (EtOH) $\lambda_{\max }$ $(\log \epsilon) 210(3.72), 290(2.66) \mathrm{nm}$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 1726(\mathrm{C}=\mathrm{O}$ cycloheptanone and acetate), $1254(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{HPLC}_{\mathrm{R}} 42$ $\mathrm{min} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), see Table 5 and $\delta 2.06$ (3H, $\mathrm{s}, \mathrm{OAc}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 5 and $\delta 170.6$ (C=O acetate), 21.3 (Me-acetate); EIMS m/z 276 [M]+ (10), 248 (0.1), 216 (0.5), 188 (9), 173 (7), 161 (2), 145 (100), 131 (5), 119 (14), 105 (3), 93 (2), 72 (4), 55 (1), 43 (16); HREIMS m/z 276.1726 (calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}, 276.1725$).
(1R ,3R ,5R,8S,11S)-1-Acetyloxy-7-oxopatzcuar-9-ene (9): colorless oil; $[\alpha]_{589}+329^{\circ},[\alpha]_{578}+350^{\circ},[\alpha]_{546}+412^{\circ},[\alpha]_{436}$ $+894^{\circ},[\alpha]_{365}+2406^{\circ}\left(\mathrm{c} 0.03, \mathrm{CHCl}_{3}\right)$; UV (EtOH) $\lambda_{\max }(\log \epsilon)$ 208 (3.64), 305 (2.47) nm; IR (CHCl_{3}) $v_{\text {max }} 1764$ ($\mathrm{C}=\mathrm{O}$ cyclobutanone), 1728 ($\mathrm{C}=\mathrm{O}$ acetate), $1250(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; HPLC $\mathrm{t}_{\mathrm{R}} 34$ $\mathrm{min} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), see Table 5 and $\delta 1.97$ (3H, $\mathrm{s}, \mathrm{OAc}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}$), see Table 5 and $\delta 170.3$ ($\mathrm{C}=\mathrm{O}$ acetate), 21.3 (Me-acetate); EIMS m/z 234 [M $\left.\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}\right)\right]^{+}(0.4), 206(26), 189(3), 173$ (24), 163 (3), 146 (95), 131 (100), 121 (4), 105 (6), 91 (3), 69 (2), 57 (1), 43 (16); HREIMS m/z 276.1726 (calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}, 276.1725$).

Acknowledgment. Wethank Dr. Oscar R. Suárez-Castillo (Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidal go) for X-ray data collection, and Dr. Luisa U. Román and Dr. J uan D. Hernández (Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo) for providing the plant material. Partial financial support from CoNaCyT (México) is acknowledged.

Supporting Information Available: Atomic coordinates, bond distances, bond angles, and crystallographic data of compounds 21, 22, 25, and $\mathbf{2 8}$ (S1-S17) are available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Bourguet, E.; Baneres, J.-L.; Girard, J.-P.; Parello, J.; Vidal, J.-P.; Lusinchi, X.; Declercq, J.-P. Org. Lett. 2001, 3, 3067-3070.
(2) Davies, G. M.; Hitchcock, P. B.; McCabe, R. W.; Young, D. W. J . Chem. Soc., Perkin Trans. 1 1992, 3391-3395.
(3) J acobi, P. A.; Buddhu, S. C.; Fry, D.; Rajeswari, S. J. Org. Chem. 1997, 62, 2894-2906.
(4) Carter, G. T.; Phillipson, D. W.; West, R. R.; Borders, D. B. J. Org. Chem. 1993, 58, 6588-6595.
(5) SwindelI, C. S. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science Publishers B.V.: Amsterdam, 1993; Vol. 12, pp 179-231.
(6) (a) Hernández, L. R.; Catalán, C. A. N.; J oseph-Nathan, P. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 1998, 22, 229-279; available on [http:// www.accefyn.org.co/PubliAcad/Periodicas/83/83(229)/83(nathan). html]. (b) Cerda-García-Rojas, C. M.; Pereda-Miranda, R. In Stevia: the Genus Stevia; Kinghorn, A. D., Ed.; Medicinal and Aromatic Plants-Industrial Profiles, Vol. 19; Taylor \& Francis: London, 2002; Chapter 5, pp 86-118.
(7) J oseph-Nathan, P.; Cerda, C. M.; del Río, R. E.; Román, L. U.; Hernández, J. D. J. Nat. Prod. 1986, 49, 1053-1060.
(8) Román, L. U.; Hernández, J. D.; del Río, R. E.; Bucio, M. A.; Cerda-García-Rojas, C. M.; J oseph-Nathan, P.J. Org. Chem. 1991, 56, 19381940.
(9) Román, L. U.; Hernández, J. D.; Cerda-Garáa-Rojas, C. M.; DomínguezLópez, R. M.; J oseph-Nathan, P. J. Nat. Prod. 1992, 55, 577-588.
(10) Román, L. U.; Zepeda, L. G.; Morales, N. R.; Hernández, J . D.; Cerda-García-Rojas, C. M.; J oseph-Nathan, P.J . Nat. Prod. 1995, 58, 18081816.
(11) Román, L. U.; Zepeda, L. G.; Morales, N. R.; Flores, S.; Hernández, J. D.; Cerda-García-Rojas, C. M.; J oseph-Nathan, P. J . Nat. Prod. 1996, 59, 391-395.
(12) Román, L. U.; M orales, N. R.; Hernández, J . D.; Cerda-García-Rojas, C. M.; Zepeda, L. G.; Flores-Sandoval, C. A.; J oseph-Nathan, P. Tetrahedron 2001, 57, 7269-7275.
(13) Cerda-García-Rojas, C. M.; Flores-Sandoval, C. A.; Román, L. U.; Hernández, J. D.; J oseph-Nathan, P. Tetrahedron 2002, 58, 1061 1068.
(14) J oseph-Nathan, P.; Meléndez-Rodríguez, M.; Cerda-García-Rojas, C. M.; Catalán, C. A. N. Tetrahedron Lett. 1996, 37, 8093-8096.
(15) Meléndez-Rodríguez, M.; Cerda-García-Rojas, C. M.; Catalán, C. A. N.; J oseph-N athan, P. Tetrahedron 2002, 58, 2331-2338.
(16) Román, L. U.; del Río, R. E.; Hernández, J. D.; Cerda, C. M.; Cervantes, D.; Castañeda, R.; J oseph-Nathan, P. J . Org. Chem. 1985, 50, 3965-3972. The HETCOR spectra established that the carbon chemical shifts of C-1 and C-9 in $\mathbf{1 0}$ and $\mathbf{1 1}$ and the proton chemical shifts of $\mathrm{Me}-12$ and $\mathrm{Me}-15$ in 10, 11, 18, and $\mathbf{2 3}$ were interchanged therein.
(17) Reynolds, W. F.; McLean, S.; Perpick-Dumont, M.; Enríquez, R. Magn. Reson. Chem. 1989, 27, 162-169.
(18) Burkert, U.; Allinger, N. L. Molecular Mechanics; ACS Monograph 177; American Chemical Society: Washington, D.C., 1982.
(19) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. (b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
(20) Warnhoff, E. W. Can. J. Chem. 1977, 55, 1635-1643.
(21) Taylor, D. A. H. J . Chem. Soc. C 1970, 336-340.
(22) Houk, K. N. Chem. Rev. 1976, 76, 1-74.
(23) Hurst, J. J.; Whitham, G. H. J. Chem. Soc. 1960, 2864-2869.
(24) Erman, W. F. J . Am. Chem. Soc. 1967, 89, 3828-3841.
(25) Schuster, D. I.; Widman, D. Tetrahedron Lett. 1971, 3571-3574.
(26) Nakanishi, K.; Goto, T.; Itô, S.; Natori, S.; Nozoe, S. Natural Products Chemistry; Academic Press: London, 1974; Vol. 1, p 65.
(27) Moore, R. N.; Fisher, G. S. J. Am. Chem. Soc. 1956, 78, 4362-4364.
(28) Meyer, A. Y.; Pasternak R.; Sterling, J .; Lander N.; Mechoulam R. Tetrahedron 1976, 32, 2805-2810.
(29) Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; Altona, C. Tetrahedron 1980, 36, $2783-2792$.
(30) Cerda-García-Rojas, C. M.; Zepeda, L. G.; J oseph-Nathan, P. Tetrahedron Comput. Methodol. 1990, 3, 113-118.
(31) Weyerstahl, P.; Marschall, H.; Seelmann, I.; J akupovic, J. Eur. J. Org. Chem. 1998, 1205-1212.
(32) Asakawa, Y. In Progress in the Chemistry of Organic Natural Products; Herz, W., Kirby, G. W., Moore R. E., Steglich, W., Tamm Ch., Eds.; Springer-Verlag: Wien, 1995; Vol. 65, pp 208-208.
(33) Yoshihara, K.; Hirose, Y. Bull. Chem. Soc. J pn. 1975, 48, 2078-2080.
(34) Still, W. C.; Kahn, M.; Mitra, A. J . Org. Chem. 1978, 43, 2923-2925.
(35) Sheldrick, G. M. Programs for Crystal Structure Analysis; Institut für Anorganische Chemie der Universität, University of Göttingen: Göttingen, Germany, 1998.
(36) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837-838.
(37) Egert, E.; Sheldrick, G. M. Acta Crystallogr. 1985, A41, 262-268.

NP020158S

[^0]: * To whom correspondence should be addressed. Tel: (52-55) 5747-7112 Fax: (52-55) 5747-7137. E-mail: pjoseph@nathan.chem.cinvestav.mx.

[^1]: ${ }^{\text {a }}$ Measured in CDCl_{3} at $75.4 \mathrm{MHz} ; \delta$ in ppm from TMS. ${ }^{\text {b }}$ Tentative assignment. The shifts due to substituents at oxygen atoms are

[^2]: ${ }^{\text {a }}$ Measured in CDCl_{3} at 300 and 75.4 MHz , respctively; δ in ppm from TMS and J values (Hz) in parentheses. The shifts due to substituents at oxygen atoms are given in the Experimental Section.

